2022 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations

Summary From the Basic Life Support; Advanced Life Support; Pediatric Life Support; Neonatal Life Support; Education, Implementation, and Teams; and First Aid Task Forces

Myra H. Wyckoff, MD, NLS Chair; Robert Greif, MD, MME, EIT Chair; Peter T. Morley,

MBBS, SAC Chair; Kee-Chong Ng, MBBS, Mmed(Peds), PLS Chair; Theresa M. Olasveengen, MD, PhD, BLS Chair; Eunice M. Singletary, MD, FA Chair; Jasmeet Soar, MA, MB, BChir,

ALS Chair; Adam Cheng, MD, EIT Vice Chair; Ian R. Drennan, ACP, PhD, BLS Vice Chair;

Helen G. Liley, MBChB, Vice Chair; Barnaby R. Scholefield, MBBS, MRCPCH, PhD, PLS

Vice Chair; Michael Smyth, BSc(Hons), MSc, PhD, BLS Vice Chair; Michelle Welsford, MD,

BSc, SAC Vice Chair; David A. Zideman, LVO, QHP(C), MBBS, FA Vice Chair; Jason

Acworth, MBBS, FRACP(PEM); Richard Aickin MBChB; Lars W. Andersen, MD, MPH, PhD,

DMSc; Diane Atkins, MD; David C. Berry, PhD, MHA; Farhan Bhanji, MD, MSc(Ed); Joost

Bierens, MD, PhD, MCDM, MCPM; Thomaz Bittencourt Couto, MD, PhD; Markus B.

Skrifvars, MD, PhD; Vere Borra, PhD; Bernd W. Böttiger, MD, ML, DEAA; Richard N.

Bradley, MD; Janet E Bray RN, PhD; Jan Breckwoldt, MD, MME; Clifton W. Callaway MD,

PhD; Jestin N. Carlson, MD, MS; Pascal Cassan, MD; Maaret Castrén, MD, PhD; Wei-Tien

Chang, MD, PhD; Nathan P. Charlton, MD; Sung Phil Chung, MD, PhD; Julie Considine, RN,

PhD; Daniela T. Costa-Nobre MD, MHS, PhD; Keith Couper, RN, PhD; Katie N. Dainty, MSc,

PhD; Peter G. Davis, MBBS, MD; Maria Fernanda de Almeida, MD, PhD; Allan R. De Caen,

MD; Charles D. Deakin, MA, MD; Therese Djärv, MD, PhD; Michael W. Donnino, MD;

Matthew J. Douma, PhD(c), MN, RN; Jonathan P. Duff, MD; Cody L. Dunne, MD; Kathryn

- Eastwood, PhD, BParamedicStud, Bnurse; Walid El-Naggar, MD; Jorge G. Fabres, MD, MSPH; Joe Fawke, MBChB; Judith Finn, PhD, RN; Elizabeth E. Foglia, MD, MA, MSCE; Fredrik
- Folke, MD, PhD; Elaine Gilfoyle, MD, MMEd; Craig A. Goolsby, MD, MEd*; Asger Granfeldt,MD, PhD, DMSc; Anne-Marie Guerguerian, MD, PhD; Ruth Guinsburg, MD, PhD; Karen G.Hirsch, MD; Mathias J. Holmberg, MD, MPH; Shigeharu Hosono, MD, PhD; Ming-Ju Hsieh,
- MD, MSc, PhD; Cindy H. Hsu, MD, PhD; Takanari Ikeyama, MD; Tetsuya Isayama, MD, MSc,
 PhD; Nicholas J. Johnson, MD; Vishal S. Kapadia, MD, MSCS; Mandira Daripa Kawakami,
 MD, PhD; Han-Suk Kim, MD, PhD; Monica Kleinman, MD; David A. Kloeck, MBBCh,
 FCPaed, Crit Care (SA); Peter J. Kudenchuk, MD; Anthony T. Lagina, MD; Kasper G.
- Lauridsen, MD, PhD; Eric J. Lavonas, MD, MS; Henry C. Lee, MD, MS; Yiqun (Jeffrey) Lin,
 MD, MHSc, PhD; Andrew S. Lockey, MBChB, PhD; Ian K. Maconochie, MBBS, LMSSA,
 PhD; R. John Madar, MBBS; Carolina Malta Hansen, MD, PhD; Siobhan Masterson PhD;
 Tasuku Matsuyama, MD, PhD; Christopher J.D. McKinlay, MBChB, PhD, DipProfEthics;
- Daniel Meyran, MD; Patrick Morgan, MBChB, DipIMC RCSEd; Laurie J. Morrison, MD, MSc;
 Vinay Nadkarni, MD; Firdose L. Nakwa, MBBCh, MMed (Paeds); Kevin J. Nation, NZRN;
 Ziad Nehme, PhD; Michael Nemeth, MA; Robert W. Neumar, MD, PhD; Tonia Nicholson,
- MBBS, BscPsych; Nikolaos Nikolaou, MD; Chika Nishiyama, RN, DrPH; Tatsuya Norii, MD; Gabrielle A. Nuthall, MBChB; Brian J. O'Neill, MD; Yong-Kwang Gene Ong, MBBS,

MRCPCH; Aaron M. Orkin, MD, MSc, PHH, PhD; Edison F. Paiva, MD, PhD; Michael J. Parr,

MBBS; Catherine Patocka, MDCM, MHPE; Jeffrey L. Pellegrino, PhD, MPH; Gavin D. Perkins,

MBChB, MMEd, MD; Jeffrey M. Perlman, MBChB; Yacov Rabi, MD; Viraraghavan V. Ramaswamy, MD, DM; Amelia G. Reis, MD, PhD; Joshua C. Reynolds, MD, MS; Giuseppe Ristagno, MD, PhD; Antonio Rodiguez-Nunez MD, PhD; Charles C. Roehr, MD, PhD; Mario
Rüdiger, MD, PhD; Tetsuya Sakamoto, MD, PhD; Claudio Sandroni, MD; Taylor L Sawyer,
DO, Med; Steve M. Schexnayder, MD; Georg M. Schmölzer, MD, PhD; Sebastian Schnaubelt,
MD; Federico Semeraro, MD; Christopher M. Smith, MD, MSc; Takahiro Sugiura, MD, PhD;
Janice A. Tijssen, MD, MSc; Daniele Trevisanuto, MD; Patrick Van de Voorde, MD, PhD;
Tzong-Luen Wang, MD, PhD, JM; Gary M. Weiner, MD; Jonathan P. Wyllie, MBChB; Chih-

Wei Yang, MD, PhD; Joyce Yeung, PhD, RN; Jerry P. Nolan, MBChB; Katherine M. Berg, MD

ABSTRACT

The International Liaison Committee on Resuscitation conducts a continuous review of new, peer-reviewed published cardiopulmonary resuscitation science. This is the sixth annual summary of the International Liaison Committee on Resuscitation International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. This latest summary addresses the most recent published resuscitation evidence reviewed by International Liaison Committee on Resuscitation task force science experts. Topics covered by systematic reviews in this summary include cardiopulmonary resuscitation during transport, approach to resuscitation for a drowning victim (compressionsairway-breathing versus airway-breathing-compressions), passive ventilation techniques and minimizing pauses during cardiopulmonary resuscitation, temperature management after cardiac arrest, use of point-of-care ultrasound for diagnosing reversible causes during cardiac arrest, use of vasopressin and corticosteroids during cardiac arrest, coronary angiography after cardiac arrest, public access defibrillation devices for children, pediatric early-warning systems, maintaining normal temperature immediately after birth, suctioning of amniotic fluid at birth, tactile stimulation for resuscitation immediately after birth, use of continuous positive airway pressure for respiratory distress at term birth, respiratory and heart rate monitoring in the delivery room, supraglottic airway use in neonates, prearrest prediction of in-hospital cardiac arrest mortality, basic life support training for high-risk populations, effect of resuscitation team advanced life support training, blended learning for life support training, training and recertification for resuscitation instructors, and the recovery position for maintenance of breathing and prevention of cardiac arrest. Members from 6 International Liaison Committee on Resuscitation task forces have assessed, discussed, and debated the quality of the evidence-on

the basis of Grading of Recommendations Assessment, Development, and Evaluation criteria and their statements include consensus treatment recommendations. Insights into the deliberations of the task forces are provided in the Justification and Evidence-to-Decision Framework Highlights sections. In addition, the task forces listed priority knowledge gaps for further research.

Key words: ILCOR, cardiac arrest, resuscitation, first aid, infant, newborn, pediatrics, basic life support, advanced life support

ABBREVIATIONS

ACLS	A deserved Condination Life Summart
AED	Advanced Cardiovascular Life Support automated external defibrillator
ALS	
ALS	Advanced Life Support Advanced Resuscitation of the Newborn Infant
ATLS	Advanced Trauma Life Support
BLS	Basic Life Support
CAG	coronary angiography
CARES	Cardiac Arrest Registry to Enhance Survival
CART	classification and regression tree
CPAP	continuous positive airway pressure
CPC	Cerebral Performance Category
CPR	cardiopulmonary resuscitation
DNACPR	do not attempt CPR
ECG	electrocardiogram
ECPR	extracorporeal CPR
EMS	Emergency medical services
EPALS	European Paediatric Advanced Life Support
EPILS	European Paediatric Intermediate Life Support
ETC	European Trauma Course
GO-FAR	Good Outcome Following Attempted Resuscitation
GRADE	Grading of Recommendations Assessment, Development, and Evaluation
HBB	Helping Babies Breathe
ICU	intensive care unit
IHCA	in-hospital cardiac arrest
ILCOR	International Liaison Committee on Resuscitation
IV	intravenous
NICU	neonatal intensive care unit
NLS	neonatal life support
NRP	Newborn Resuscitation Programs
NRT	neonatal resuscitation training
OHCA	out-of-hospital cardiac arrest
OR	odds ratio
PALS	Pediatric Advanced Life Support
PAM	prearrest morbidity
PAR	prognosis after resuscitation
PCI	percutaneous coronary intervention
PEWS	Pediatric Early Warning Systems
PICO	population, intervention, comparator, and outcome
PICOST	population, intervention, comparator, outcome, study design, and time frame
PIHCA	Prediction of Outcome for In-Hospital Cardiac Arrest
PLS	Pediatric Life Support
POCUS	point-of-care ultrasound
PPV	positive pressure ventilation
PROSPERO	Prospective Register of Systematic Reviews
RCT	randomized controlled trial
RD	risk difference
RFM	respiratory function monitor
L	

ROSC	return of spontaneous circulation
RR	relative risk
SGA	supraglottic airway
TTM	targeted temperature management

INTRODUCTION

This is the sixth in a series of annual International Liaison Committee on Resuscitation (ILCOR) *International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations* (CoSTR) publications summarizing the ILCOR task force analyses of published resuscitation evidence. The 2022 review includes 21 topics addressed with systematic reviews (SysRevs) by the 6 task forces. Although only a SysRev can generate a full CoSTR and updated treatment recommendations, many other topics were reviewed via more streamlined approaches, detailed below.

Draft CoSTRs for all topics evaluated with SysRevs were posted on a rolling basis from June 2021 through March 2022 on the ILCOR website. These draft CoSTRs include a summary of all data included in the review, as well as draft treatment recommendations. Each CoSTR posting is followed by a 2-week period, during which public comments are accepted. Task forces consider these comments and provide responses. The 21 draft CoSTR statements were viewed approximately XX times, and XX comments were provided as feedback. These CoSTRs are now available online, adding to the existing CoSTR statements.

This summary contains the final wording of the treatment recommendations and good practice statements as approved by the task forces and by the ILCOR member councils, but differs in several respects from the online CoSTRs: the language used to describe the evidence in this summary is not restricted to standard Grading of Recommendations Assessment, Development, and Evaluation (GRADE) terminology, thereby making it more transparent to a wider audience; in some cases, only the high-priority outcomes are reported, and results are presented in tables where possible, for improved clarity. The Justification and Evidence-to-Decision Framework Highlights sections are in some cases shortened but aim to provide insight

into the rationale behind the treatment recommendations. Finally, the task forces have prioritized knowledge gaps requiring future research. Links to the published reviews and full online CoSTRs are provided in the individual sections.

The CoSTRs are based on task force analysis of the data, using the GRADE approach. Each analysis has been detailed in either a systematic review conducted by an expert systematic reviewer, or as a task force–led SysRev, and always with input from ILCOR content experts. This GRADE approach rates the certainty of evidence supporting the intervention (predefined by the population, intervention, comparator, outcome [PICO] question) as high, moderate, low, or very low. Randomized controlled trials (RCT) begin the analysis as high-certainty evidence, and observational studies begin as low-certainty evidence. Certainty of evidence can be downgraded for risk of bias, inconsistency, indirectness, imprecision, or publication bias; it can be upgraded for a large effect, a dose-response effect, or if any residual confounding would be thought to decrease the detected effect.

In addition to the certainty of evidence, each statement includes the pertinent outcome data. The format for the data varies by what is available but ideally includes both relative risk with 95% CI and risk difference with 95% CI. The risk difference is the absolute difference between the risks and is calculated by subtracting the risk in the control group from the risk in the intervention group. This absolute effect enables a more clinically useful assessment of the magnitude of the effect of an intervention and enables calculation of the number needed to treat (number needed to treat=1/risk difference). In cases where the data do not enable absolute effect estimates to be determined, alternative measures of effect, such as odds ratios, are reported.

Treatment recommendations are generated by the task forces after weighing the evidence and after task force discussion. The strength of a recommendation is determined by the task force

and is not necessarily tied to the certainty of evidence. Although ILCOR generally has not produced any guidance when the evidence is insufficient to support a recommendation, in some cases, good practice statements have been provided for topics thought to be of particular interest to the resuscitation community. Good practice statements are not recommendations but represent expert opinion in light of very limited data.

ILCOR's goal is to review at least 20% of all PICO questions each year so that the CoSTRs reflect current and emerging science. To facilitate this goal, and acknowledging that many PICO topics will not have sufficient new evidence to warrant a SysRev, ILCOR implemented 2 additional levels of evidence review in 2020, which were also used for 2022. Scoping reviews (ScopRevs) are undertaken when there is a lack of clarity on the amount and type of evidence on a broader topic. ScopRevs are broad searches done in multiple databases with a rigor similar to that of a SysRev, but they do not include bias assessments or metaanalyses. The third and least rigorous form of evidence evaluation is the evidence update (EvUp), in which a less comprehensive search is carried out to screen for significant new data and assess whether there has been sufficient new science to warrant a new ScopRev or SysRev. Both ScopRevs and EvUps can inform a decision about whether a SysRev should be undertaken but are not used to generate a new or updated CoSTR because they do not include bias assessment, GRADE evaluation, or meta-analyses. In this document, the results of ScopRevs are included in a more concise form than in the online version, similar to the SysRevs. EvUps are tabulated by topic at the end of each task force section, with the associated documents provided in Appendix B.

The following topics are addressed in this CoSTR summary:

Basic Life Support

- Passive ventilation techniques (SysRev)
- Minimizing pauses in chest compressions (SysRev)
- Cardiopulmonary resuscitation (CPR) during transport (SysRev)
- Compressions-airway-breaths (C-A-B) or airway-breaths-compressions (A-B-C) in drowning (new topic: SysRev)
- Paddle size and placement for defibrillation (EvUp)
- Barrier devices (EvUp)
- Chest compression rate (EvUp)
- Rhythm check timing (EvUp)
- Timing of CPR cycles (2 minutes versus other) (EvUp)
- Public-access automated external defibrillator (AED) programs (EvUp)
- Checking for circulation during basic life support (BLS) (EvUp)
- Rescuer fatigue in compression-only CPR (EvUp)
- Harm from CPR to victims not in cardiac arrest (EvUp)
- Harm to rescuers from CPR (EvUp)
- Hand positioning during compressions (EvUp)
- Dispatch-assisted compression-only versus conventional CPR (EvUp)
- Emergency medical services chest compression–only versus conventional CPR (EvUp)
- Compression-to-ventilation ratio (EvUp)
- CPR before defibrillation (EvUp)
- Chest compression depth (EvUp)
- Chest wall recoil (EvUp)

- Foreign body airway obstruction (EvUp)
- Firm surface for CPR (EvUp)
- In-hospital chest compression–only CPR versus conventional CPR (EvUp)
- Analysis of rhythm during chest compressions (EvUp)
- Alternative compression techniques (cough, precordial thump, fist pacing) (EvUp)
- Tidal volumes and ventilation rates (EvUp)
- Lay rescuer chest compression-only versus conventional CPR (EvUp)
- Starting CPR (C-A-B versus A-C-B) (EvUp)
- Dispatcher recognition of cardiac arrest (EvUp)
- Resuscitation care for suspected opioid-associated emergencies (EvUp)
- CPR before call for help (EvUp)
- Video-based dispatch (EvUp)
- Head-up CPR (EvUp)

Advanced Life Support

- Targeted temperature management (TTM) after cardiac arrest (SysRev)
- Point-of-care ultrasound as a diagnostic tool during cardiac arrest (SysRev)
- Vasopressin and corticosteroids for cardiac arrest (SysRev)
- Post-cardiac arrest coronary angiography (SysRev Update)
- Vasopressors during cardiac arrest (EvUp)
- Cardiac arrest from pulmonary embolism (EvUp)

Pediatric Life Support

• Public-access devices (SysRev)

- Pediatric early warning systems (SysRev)
- Sequence of compression and ventilation (EvUp)
- Chest compression–only versus conventional CPR (EvUp)
- Drugs for the treatment of bradycardia (EvUp)
- Emergency transcutaneous pacing for bradycardia (EvUp)
- Extracorporeal CPR for pediatric cardiac arrest (EvUp)
- Intraosseous versus intravenous route of drug administration (EvUp)
- Sodium bicarbonate administration for children in cardiac arrest (EvUp)
- TTM (EvUp)

Neonatal Life Support

- Maintaining normal temperature immediately after birth in late preterm and term infants (SysRev)
- Suctioning clear amniotic fluid at birth (SysRev)
- Tactile stimulation for resuscitation immediately after birth (SysRev)
- Delivery room heart rate monitoring to improve outcomes for newborn infants (SysRev)
- Continuous positive airway pressure (CPAP) versus no CPAP for term respiratory distress in the delivery room (SysRev)
- Supraglottic airways (SGAs) for neonatal resuscitation (SysRev)
- Respiratory function monitoring during neonatal resuscitation at birth (SysRev)

Education, Implementation, and Teams

- Prearrest prediction of survival following in-hospital cardiac arrest (SysRev)
- BLS training for high-risk populations (SysRev)

- Patient outcome and resuscitation team members attending advanced life support courses (SysRev with EvUp)
- Blended learning for life support education (SysRev)
- Faculty Development Approaches for Life Support Courses (ScopRev)
- Willingness to provide CPR (EvUp)
- Team and leadership training (EvUp)
- Medical emergency teams (METs) for adults (EvUp)
- Community initiatives to promote BLS (EvUp)
- Debriefing of CPR performance (EvUp)
- Spaced learning (EvUp)

First Aid

- The recovery position for maintenance of adequate ventilation and the prevention of cardiac arrest (SysRev)
- Oral dilution for caustic substance ingestion (EvUp)
- Recognition of anaphylaxis (EvUp)
- Compression wraps for acute closed ankle joint injury (EvUp)
- Open chest wound dressings (EvUp)
- Bronchodilators for acute asthma exacerbation (EvUp)
- Optimal duration of cooling of burns with water (EvUp)
- Preventive interventions for presyncope (EvUp)
- Single-stage scoring systems for concussion (EvUp)
- Cooling techniques for exertional hyperthermia and heatstroke (EvUp)

- First aid use of supplemental oxygen for acute stroke (EvUp)
- Methods of glucose administration for hypoglycemia in first aid setting (EvUp)
- Pediatric tourniquet types for life-threatening extremity bleeding (EvUp)

Readers are encouraged to monitor the ILCOR website¹ to provide feedback on planned SysRevs and to provide comments when additional draft reviews are posted.

BASIC LIFE SUPPORT

Passive Ventilation Techniques (SysRev)

Rationale for Review

This topic was prioritized by the BLS Task Force because the topic had not been reviewed since the 2015 CoSTR recommendations. This systematic review was registered in the International Prospective Register of Systematic Reviews (PROSPERO; CRD42021293309). The full text of this CoSTR can be found on the ILCOR website.²

Population, Intervention, Comparator, Outcome, Study Designs, and Time Frame

- **Population:** Adults and children with presumed cardiac arrest in any setting
- **Intervention:** Any passive ventilation technique (eg, positioning the body, opening the airway, passive oxygen administration, Boussignac tube, constant flow insufflation of oxygen) in addition to chest compressions
- **Comparator:** Standard CPR
- Outcomes:
 - Critical: Survival to hospital discharge with good neurological outcome, survival to hospital discharge
 - Important: Return of spontaneous circulation (ROSC)

- **Study design:** RCTs and nonrandomized studies (nonrandomized controlled trials [non-RCTs], interrupted time series, controlled before-and-after studies, cohort studies) were eligible for inclusion. Unpublished studies (eg, conference abstracts, trial protocols) were excluded.
- **Time frame:** All years and all languages were included if there was an English abstract. Literature search updated to October 16, 2021.

Consensus on Science

Two RCTs, 1 observational study, and a very small pilot RCT were identified.³⁻⁶ The overall certainty of evidence was rated as very low. The individual studies were all at a critical risk of bias and indirectness. Because of a high degree of heterogeneity, the meta-analyses included only 2 RCTs, in which passive ventilation through constant-flow insufflation of oxygen with the aid of a modified tracheal tube was compared with mechanical ventilation.^{3,4} The observational study evaluated passive oxygen insufflation as a part of a minimally interrupted CPR bundle (also including uninterrupted preshock and postshock chest compressions and early epinephrine administration).⁵ The pilot RCT compared 9 patients who received chest compression–induced ventilation that included continuous positive airway pressure with 11 patients who received volume-controlled ventilation during CPR.⁶ Key results are presented in Table 1.

 Table 1. Overview of Key Outcomes for Passive Ventilation During CPR Compared With

 Standard CPR

Outcomes (importance)	Participants (n), studies	Certainty of evidence (GRADE)	RR (95% CI)	Anticipated absolute effects
Discharge with favorable	1019 patients,	Very low	1.03	3 patients
outcome (critical)	1 observational		(0.84–	more/1000 (15
	study ⁵		1.26)	fewer to 25 more)

Outcomes (importance)	Participants (n), studies	Certainty of evidence (GRADE)	RR (95% CI)	Anticipated absolute effects
Survival to ICU discharge	791 patients,	Low	0.96	1 patient
(critical)	$2 \text{ RCTs}^{3,4}$		(0.31–	fewer/1000 (14
			2.85)	fewer to 38 more)
Survival to admission	791 patients,	Low	0.92 (0.64–	14 patients
(important)	$2 \text{ RCTs}^{3,4}$		1.24)	fewer/1000 (61
				fewer to 41 more)
ROSC (important)	791 patients,	Low	0.98	4 patients
	$2 \text{ RCTs}^{3,4}$		(0.85–	fewer/1000 (31
			1.12)	fewer to 25 more)
ROSC (important)	1019 patients,	Very low	0.85	45 patients
_	1 observational		(0.77–	fewer/1000 (69
	study ⁵		1.00)	fewer to 0 more)
ROSC (important)	20 patients,	Very low	0.85	45 patients
	1 pilot RCT study ⁶		(0.77–	fewer/1000 (69
			1.00)	fewer to 0 more)

CPR indicates cardiopulmonary resuscitation; ICU, intensive care unit; GRADE, Grading of Recommendations, Assessment, Development, and Evaluation; RCT, randomized controlled trial; ROSC, return of spontaneous circulation; and RR, risk ratio.

Treatment Recommendations

We suggest against the routine use of passive ventilation techniques during conventional

CPR (weak recommendation, very low-certainty evidence).

Justification and Evidence-to-Decision Framework Highlights

The complete evidence-to-decision table is included in Appendix A.

Passive ventilation may represent an alternative to intermittent positive-pressure

ventilation. It may shorten interruptions in chest compressions for advanced airway management

and may overcome the potential harm from positive-pressure ventilation (increased intrathoracic

pressure leading to reduced venous return to the heart and reduced coronary perfusion pressure,

then increased pulmonary vascular resistance).

The 2 larger RCTs^{3,4} that were included compared intermittent positive-pressure

ventilation via a tracheal tube with continuous insufflation of oxygen through a modified tracheal

tube, ie, a Boussignac tube. The Boussignac tube used in these studies generates a constant

tracheal pressure of approximately 10 cm H₂O. When available, the active compressiondecompression device was used to perform CPR. These adjuncts may have played a role in the generation and magnitude of passive ventilation. The included observational study⁵ was highly confounded because multiple aspects of the CPR protocols compared were different, including the ventilation strategies, rhythm check timing, compression-to-ventilation ratios, and compression intervals between shocks. Overall, certainty of evidence was rated as very low primarily because of the risk of bias due to indirectness.

We acknowledge that where emergency medical services systems have adopted a bundle of care that includes minimally interrupted cardiac resuscitation with passive ventilation, it is reasonable to continue with that strategy in the absence of compelling evidence to the contrary.

Task Force Knowledge Gaps

- The efficacy of passive ventilation in the lay rescuer setting
- The optimal method for ensuring a patent airway
- Whether there is a critical volume of air movement required to maintain ventilation/oxygenation
- The effectiveness of passive insufflation in children

Minimizing Pauses in Chest Compressions (SysRev)

Rationale for Review

This topic was prioritized by the BLS Task Force because the topic had not been reviewed since the 2015 CoSTR. This systematic review was registered in PROSPERO (CRD42019154784). The full text of this CoSTR can be found on the ILCOR website.⁷

Population, Intervention, Comparator, Outcome, Study Designs, and Time Frame

- **Population:** Adults in cardiac arrest in any setting
- Intervention: Minimizing of pauses in chest compressions (higher CPR or chest compression fraction or shorter perishock pauses compared with control)
- **Comparator:** Standard CPR (lower CPR fraction or longer perishock pauses compared with intervention)
- Outcomes:
 - Critical: Survival to hospital discharge with good neurological outcome and survival to hospital discharge
 - Important: ROSC
- **Study design:** RCTs and nonrandomized studies (non-RCTs, interrupted time series, controlled before-and-after studies, cohort studies) were eligible for inclusion. Unpublished studies (eg, conference abstracts, trial protocols) were excluded.
- **Time frame:** All years and all languages were included if there was an English abstract. Literature search updated to December 17, 2021.

Consensus on Science

Three RCTs⁸⁻¹⁰ and 21 observational studies were identified.¹¹⁻³¹ The evidence identified was divided into 5 categories, and results are summarized in Table 2:

- 1. RCTs designed to evaluate interventions affecting quality of CPR
- 2. Observational studies comparing outcomes before and after interventions designed to improve quality of care (including pauses in chest compressions) or between different systems that had differences in CPR fraction

- Observational studies exploring associations between pauses in chest compressions and outcomes
- 4. Observational studies where outcomes were compared between groups in different chest compression pause categories
- 5. Observational studies where pauses in compressions were compared between survivors and nonsurvivors

The overall certainty of evidence was rated as very low for all outcomes, primarily because of a very serious risk of bias. The individual studies were all at a critical risk of bias due to confounding. Because of this and a high degree of heterogeneity, no meta-analyses could be performed and the individual studies are difficult to interpret.

Category	Studies	Certainty of evidence (GRADE)	Main findings
1. RCTs on interventions that affect pauses	3 RCTs ⁸⁻¹⁰	Very low	New AED strategies resulted in higher CPR fractions and shorter preshock and postshock pauses but no differences in survival. ^{8,9} Continuous chest compression strategy resulted in higher CPR fractions and lower survival to hospital admission; no difference in survival to discharge. ¹⁰
2. Studies comparing before and after or different systems' CPR fraction	6 observational studies ¹¹⁻¹⁶	Very low	One study evaluated incremental changes in various CPR quality metrics and outcomes over time and found that from 2006 to 2016, both CPR fraction and the proportion of survivors with favorable survival increased. ¹² The other studies observing improved CPR fractions and perishock pauses did not observe significant improvements in survival. ^{11,13-16}
3. Associations between chest compression pauses and outcomes	5 observational studies ¹⁷⁻²¹	Very low	Two studies found increased CPR fraction to be associated with improved survival ^{17,18} whereas 2 did not. ^{19,20} The fifth study found increasing CPR fraction to be associated with improved ROSC. ²¹ One study found increasing perishock pause to be associated with lower survival ¹⁹ while another did not. ²⁰
4a. Outcomes compared for chest	7 observational studies ^{17,20-25}	Very low	One study showed higher favorable neurologic outcome and survival to discharge in arrests with CPR fraction >80% compared with <80% in the

Table 2. Minimizing Pauses in Chest Compressions

Category	Studies	Certainty of evidence (GRADE)	Main findings
compression pause			subgroup with >20 minute CPR duration but no differences in survival in the corresponding
categories: CPR			patient subgroups with 5 or 10 min CPR
fraction			durations. ²² Two studies observed higher
			survival to discharge in arrests with lower CPR
			fractions (<40% vs >80%) and lower survival
			with higher CPR fractions (<60% vs <80% and
			60%–79%). ^{23,24} One study observed lower
			ROSC with CPR fraction >80% compared with
			<80%. ²⁵ There were no significant differences in
			outcomes in the remaining 3 studies. ^{17,20,21}
4b. Outcomes	4 observational		Three studies observed higher survival in
compared for	studies ^{20,24,27,28}		patients with shorter preshock pauses (<10
pause			seconds) compared with longer preshock pauses
categories:			(>10–20 seconds), ^{20,24,27,28} and 2 observed higher
perishock			survival in patients with shorter perishock
pauses			pauses (<20 seconds) compared with longer
			perishock pauses (>20–40 sec). ^{24,27} One study
			did not find improved survival with preshock
			pause <10 seconds compared with >10
5 D	0 1 (1	X7 1	seconds. ²⁰
5. Pauses	8 observational	Very low	One study observed higher CPR fractions during
compared	studies ^{19,25-31}		the first 5 minutes in nonsurvivors compared
between			with survivors ¹⁹ ; 1 observed higher CPR
survivors and			fractions in patients with downtimes >15 minutes without ROSC ²⁵ ; 1 observed higher
nonsurvivors			CPR fractions in patients with ROSC. ²⁶
			Remaining 5 studies: no difference observed ²⁷⁻³¹
			Kemanning 5 studies. no unterence observed

CPR indicates cardiopulmonary resuscitation; GRADE, Grading of Recommendations, Assessment, Development, and Evaluation; and ROSC, return of spontaneous circulation.

Treatment Recommendations

We suggest that CPR fraction and perishock pauses in clinical practice be monitored as

part of a comprehensive quality improvement program for cardiac arrest designed to ensure high-

quality CPR delivery and resuscitation care across resuscitation systems (weak recommendation,

very low-certainty evidence).

We suggest that preshock and postshock pauses in chest compressions be as short as

possible (weak recommendation, very low-certainty evidence).

We suggest that the CPR fraction during cardiac arrest (CPR time devoted to compressions) should be as high as possible and be at least 60% (weak recommendation, very low–certainty evidence).

Justification and Evidence-to-Decision Framework Highlights

The complete evidence-to-decision table is included in Appendix A.

In making these recommendations, the BLS Task Force considered that low CPR fractions may not necessarily reflect lower quality of CPR, but we felt that it was important to provide a minimum value to aid guideline providers. The consensus within the resuscitation community is that high-quality CPR is important for patient outcomes and that high-quality CPR includes high CPR or chest compression fraction and short perishock pauses. Although the exact targets of these CPR metrics are uncertain, the strong belief in the benefit of minimizing pauses in compressions (along with the physiological rationale for the detrimental effect of no compressions) make prospective clinical trials of long versus short compression pauses unlikely. The evidence identified in this review was either indirect (in that the interventional studies were developed for related purposes) or observational. Observational studies are challenged by the association between pauses in compressions and good outcome because resuscitation attempts of short duration in patients with shockable rhythms tend to have better outcomes than resuscitation attempts of long duration in patients with nonshockable rhythms. The number and proportion of pauses will be dependent on both cardiac rhythm and the duration of the resuscitation attempt, and an optimal target will therefore depend on the cardiac arrest characteristics. These factors make interpreting observational data and providing guidance for CPR metrics particularly challenging.

Experimental animal data indicate possible positive effects of postconditioning (improved cardiac and neurologic function in animals treated with short, controlled pauses during initial CPR).^{32,33} There are no human data to inform postconditioning during cardiac arrest. Weighing a theoretical possibility of positive effects from limited pauses in chest compressions against a certain detrimental effect of lack of chest compressions, it is reasonable to assume that there is a low risk of harm from lack of chest compression pauses and that the possibility for desirable effects from fewer pauses outweighs the possible undesirable effects.

Task Force Knowledge Gaps

- Effect of a strategy of minimizing pauses in compressions compared with longer pauses in compressions
- Evaluation of limited pauses in compressions as part of a postconditioning strategy in humans
- Optimal pauses and CPR metrics for various subgroups (shockable versus nonshockable, short versus longer resuscitations, etc)

CPR During Transport (SysRev)

Rationale for Review

A scoping review (ScopRev) was completed for the 2020 CoSTR, and this topic was subsequently prioritized by the BLS Task Force. This systematic review was registered in PROSPERO (CRD42021240615). The full text of these CoSTRs can be found on the ILCOR website.³⁴

Population, Intervention, Comparator, Outcome, Study Designs, and Time Frame

• Population: Adults and children receiving CPR following out-of-hospital cardiac arrest

- **Intervention:** Transport with ongoing CPR
- Comparator: Completing CPR on scene
- Outcomes:
 - Critical: Survival to hospital discharge with good neurological outcome and survival to hospital discharge
 - Important: Quality of CPR metrics on scene versus during transport (reported outcomes may include rate of chest compressions, depth of chest compressions, chest compression fraction, interruptions to chest compressions, leaning on chest/incomplete release, rate of ventilation, volume of ventilation, duration of ventilation, pressure of ventilation), ROSC
- **Study design:** RCTs and nonrandomized studies (non-RCTs, interrupted time series, controlled before-and-after studies, cohort studies) were eligible for inclusion. Unpublished studies (eg, conference abstracts, trial protocols) were excluded.
- **Time frame:** All years and all languages were included if there was an English abstract. Literature search updated to 15 June 2021.

Consensus on Science

The identified studies were divided into those evaluating the effect of transport with ongoing CPR on CPR quality and those evaluating the effect of transport with ongoing CPR on patient outcomes (survival). These results are reported in separate tables (Tables 3 and 4). The studies evaluating the effect of transport with ongoing CPR on CPR quality included a wide range of quality outcomes including the impact of transport on:

- 1. Correct hand positioning
- 2. Chest compression rate

- 3. Chest compression depth
- 4. Pauses in compressions
- 5. Leaning on the chest/incomplete release
- 6. Chest compression fraction/hands-off time
- 7. Ventilation
- 8. Overall correct CPR

Category	Studies	Certainty of	Main findings
Correct hand positioning	2 manikin studies ^{35,36}	evidence (GRADE) Very low	Simulated helicopter rescue; 1 study with fewer correct compressions in flight, ³⁶ 1 study with no difference ³⁵
Chest compression rate	5 observational studies ³⁷⁻⁴¹ 4 manikin studies ^{35,42-44}	Very low	One study with slightly faster compressions during transport, ⁴¹ 2 showed increased variation, ^{39,41} 3 showed no difference. ^{37,38,40} Manikin studies had divergent results. ^{35,42-44}
Chest compression depth	4 observational studies ³⁸⁻⁴¹ 4 manikin studies ^{35,42-44}	Very low	One study with deeper compressions ⁴¹ and 1 with more correct depth ⁴⁰ during transport, 2 with no difference. ^{38,39} Manikin studies had divergent results. ^{35,42-44}
Pauses	1 manikin study ⁴⁴	Very low	Pauses during transport within guidelines ⁴⁴
Leaning on the chest/ incomplete release	2 manikin studies ^{36,44}	Very low	Manikin studies with divergent results ^{36,44}
CPR fraction	4 observational studies ^{37-39,41} 2 manikin studies ^{42,44}	Very low	3 studies showed lower CPR fractions during transport, ³⁷⁻³⁹ 1 showed no difference. ³⁹ Manikin studies had divergent results. ^{42,44}
Ventilation	2 observational studies ^{37,38}	Very low	One study with faster ventilations during transport, ³⁸ 1 study with no difference ³⁷
Overall correct CPR	1 observational study ⁴¹ 1 manikin study ⁴⁵	Very low	High-quality CPR observed both before and during transport. ⁴¹ Fewer correct compressions on manikin during transport ⁴⁵

Table 3. Effect of Transport on CPR Quality

CPR indicates cardiopulmonary resuscitation; and GRADE, Grading of Recommendations, Assessment, Development, and Evaluation.

Outcomes (importance)	Participants (n), number of studies	Certainty of evidence (GRADE)	RR (95% CI)	Anticipated absolute effects
Discharge with favorable	27 705 patients,	Very low	0.39 (0.33,	2 patients
outcome (critical)	1 observational		0.47)	fewer/1000 (2
	study ⁴⁶			fewer to 3 fewer)
Survival to discharge	27 705 patients,	Very low	0.46 (0.42,	5 patients
(critical)	1 observational		0.52)	fewer/1000 (4
	study ⁴⁶			fewer to 5 fewer)
ROSC (important)	27 705 patients,	Very low	0.41 (0.39,	23 patients
	1 observational		0.43)	fewer/1000 (22
	study ⁴⁶			fewer to 24 fewer)

Table 4. Effect of Transport on Survival

GRADE indicates Grading of Recommendations, Assessment, Development, and Evaluation; ROSC, return of spontaneous circulation; and RR, risk ratio.

Treatment Recommendations

We suggest that providers deliver resuscitation at the scene rather than undertake ambulance transport with ongoing resuscitation unless there is an appropriate indication to justify transport (eg, extracorporeal membrane oxygenation) (weak recommendation, very low-certainty evidence).

The quality of manual CPR may be reduced during transport. We recommend that whenever transport is indicated, emergency medical services providers should focus on the delivery of high-quality CPR throughout transport (strong recommendation, very low–certainty evidence).

Delivery of manual CPR during transport increases the risk of injury to providers. We recommend that emergency medical services systems have a responsibility to assess this risk and, where practicable, to implement measures to mitigate the risk (good practice statement).

Justification and Evidence-to-Decision Framework Highlights

The complete evidence-to-decision table is included in Appendix A.

In making these recommendations, the BLS Task Force considered the complexity of the

decision to transport or remain on scene, including patient factors (age, comorbidities), clinical

considerations (scope of practice of providers, aetiology, rhythm, response to treatment), logistic

considerations (location of arrest, challenges of extrication, resources required, journey to

hospital), patient and provider safety considerations, and hospital capability (extracorporeal

membrane oxygenation or other advanced interventions). The BLS Task Force's interpretation of

available evidence for CPR quality outcomes is summarized in Table 5.

Table 5. The BLS Task	Force Interpretation of Available Evidence for CPR Quality Outcomes
A 1	

Category	Interpretation
Correct hand positioning	Transport appears to have little impact on correct hand positioning.
Chest compression rate	Appropriate chest compression rates can be achieved during transport; however, there is greater variation in chest compression rate during transport compared with at the scene.
Chest compression depth	Appropriate chest compression depth can be achieved during transport; however, there is greater variation in chest compression depth during transport compared with at the scene.
Pauses	Transport appears to have little impact on extending pauses.
Leaning on the chest/incomplete release	Transport appears to have little impact on complete release.
CPR fraction	There is significant variation in chest compression fraction. Transport appears to have a negative impact on chest compression fraction.
Ventilation	Transport appears to have little impact on ventilation rates.
Overall correct CPR	There is significant variation in overall correct CPR. Transport appears to have a negative impact on overall correct CPR.

Abbreviations: CPR indicates cardiopulmonary resuscitation.

The BLS Task Force's interpretation of available evidence for survival outcomes was that the single study that was identified reported lower survival among transported patients.⁴⁶ The certainty of evidence was very low, with considerable risk of remaining confounding despite the use of propensity score matching. Overall, the task force's concerns about decreased CPR quality and provider safety when delivering CPR during transport outweighed the benefits of bringing patients to the hospital unless the hospital could offer specific treatments not available in the prehospital setting (eg, extracorporeal membrane oxygenation, coronary angiography,

echocardiography, or other potential investigations or treatments).

Task Force Knowledge Gaps

- There are only a few studies in humans.
- There are no studies in children.
- There are no studies addressing the impact on patient outcomes of CPR quality during transport.

C-A-B or A-B-C in Drowning (SysRev)

Rationale for Review

This topic was prioritized by the BLS Task Force after the ScopRev that was completed for the 2020 CoSTR. This systematic review was registered in PROSPERO (CRD42021259983). The full text of this CoSTR can be found on the ILCOR website.⁴⁷

Population, Intervention, Comparator, Outcome, Study Designs, and Time Frame

- **Population:** Adults and children in cardiac arrest following drowning
- Intervention: Resuscitation that employs a compression-first strategy (compressions, airway, breaths, or C-A-B)
- **Comparator:** Resuscitation that starts with ventilation (airway, breaths, compressions, or A-B-C)
- Outcomes:
 - Critical: Survival to hospital discharge with good neurological outcome and survival to hospital discharge
 - Important: ROSC

- **Study design:** RCTs and nonrandomized studies (non-RCTs, interrupted time series, controlled before-and-after studies, cohort studies) were eligible for inclusion. Unpublished studies (eg, conference abstracts, trial protocols) were excluded.
- **Time frame:** All years and all languages were included if there was an English abstract. Literature search updated to 16th October 2021.

Consensus on Science

Seven hundred and thirty abstracts were reviewed, of which 9 were reviewed in full text. No studies were identified as relevant to the PICO question comparing initial resuscitation strategies (ventilation first or compression first) for cardiac arrests caused by drowning. To determine good practice statements, the reviewers identified literature and other consensus statements that related indirectly to the research question.

Treatment Recommendations

We recommend a compression-first strategy (C-A-B) for lay persons providing resuscitation for adults and children in cardiac arrest caused by drowning (good practice statement).

We recommend that healthcare professionals and those with a duty to respond to drowning (eg, lifeguards) consider providing rescue breaths/ventilation first (A-B-C) before chest compressions if they have been trained to do so (good practice statement).

Justification and Evidence-to-Decision Framework Highlights

The rationale for the ventilation-first strategy (differing from adult BLS treatment recommendations) is based on the hypoxic mechanism of cardiac arrest in drowning and the belief that earlier ventilation will reverse the hypoxia sooner, either preventing the patient from

progressing from respiratory arrest to cardiac arrest or increasing the likelihood of ROSC after correcting the underlying etiology.

A similar rationale is commonly invoked in pediatric cardiac arrest, where hypoxia is a more common etiology than primary cardiac events.⁴⁸ ILCOR reviewed the evidence for initial resuscitation strategy in pediatric cardiac arrest in both 2015 and 2020.^{49,50} No human studies were identified, and the Pediatric Life Support (PLS) Task Force did not recommend either strategy as superior. Instead, they noted that a compression-first strategy prioritized uniformity with adult guidelines and simplicity, and a ventilation-first strategy prioritized more rapid reversal of hypoxia. Two manikin RCT studies that were identified in the review demonstrated that ventilation was delayed by only 5.7 to 6 seconds with a compression-first strategy compared with a ventilation-first strategy.^{51,52}

There is only indirect evidence to support a ventilation-first strategy in drowning. Another systematic review of resuscitation after drowning is currently being done to determine the impact of any ventilation at all as part of the resuscitation strategy. However, a recent scoping review found that bystander CPR including ventilation was associated with better survival.⁵³ One retrospective observational study compared in-water resuscitation (ie, ventilation) with no ventilation for drowning victims in respiratory (and possibly cardiac) arrest. Survival (87.5% versus 25%) and survival with favorable functional outcome (52.6% versus 7.4%) were higher in the in-water resuscitation cohort.⁵⁴ Another study describes significantly worse functional outcomes in drowned children who experience cardiac arrest compared with respiratory arrest only (81% versus 0%, p<0.001). By intervening with ventilation early in the arrest process before the heart has stopped (ie, addressing the hypoxic mechanism), outcomes may be improved.⁵⁵ The recommendation for a compression-first strategy (C-A-B) for lay rescuers prioritizes simplicity and cohesiveness in training recommendations for lay persons, with the goal of faster resuscitation initiation. The recommendation is supported by manikin studies finding that there was limited delay in ventilation even with a compression-first strategy.

The recommendation for healthcare professionals and those with a duty to respond to consider providing rescue breaths/ventilation first (A-B-C) considers the indirect evidence suggesting that earlier ventilations may improve outcomes. It is unclear whether earlier ventilation may improve outcomes after cardiac arrest has occurred or if the benefit is exclusively in preventing respiratory arrest from deteriorating into cardiac arrest.

Task Force Knowledge Gaps

- No studies directly evaluated this question.
- Further research informed by the Utstein template for drowning may address this ongoing uncertainty.

Topics Reviewed by EvUps

The topics reviewed by evidence updates (EvUps) are summarized in Table 6, with the PICO number, existing treatment recommendation, number of relevant studies identified, key findings, and whether a SysRev was deemed worthwhile. Complete EvUps can be found in Appendix C.

Topic/PICO	Year(s) last updated	Existing treatment recommendation	RCTs since last review, n	Observational studies since last review, n	Key findings	Sufficient data to warrant SysRev?
ALS-E-030A	2010 CoSTR;	It is reasonable to place	0	0	No new studies	No
Paddle size and	2020 ScopRev	pads on the exposed chest in			identified	
placement for		an anterior-lateral position.				
defibrillation		An acceptable alternative				
		position is anterior				
		posterior. In large-breasted				

Table 6. BLS Topics Reviewed by EvUps*

Topic/PICO	Year(s) last updated	Existing treatment recommendation	RCTs since last review, n	Observational studies since last review, n	Key findings	Sufficient data to warrant SysRev?
		individuals, it is reasonable to place the left electrode pad lateral to or below the left breast, avoiding breast tissue. Consideration should be given to the rapid removal of excessive chest hair before the application of pads, but emphasis must be on minimizing delay in shock delivery. There is insufficient evidence to recommend a specific electrode size for optimal external defibrillation in adults. However, it is reasonable to		. 6	84	
BLS 342 Barrier devices	2005 CoSTR	use a pad size greater than 8 cm. Providers should take appropriate safety precautions when feasible and when resources are available to do so, especially if a victim is known to have a serious infection (eg, HIV, tuberculosis, HBV, or SARS).	0	0	No new studies identified	No
BLS 343 Chest compression rate	2015 CoSTR; 2020 ScopRev	We recommend a manual chest compression rate of 100–120/min (strong recommendation, very low– certainty evidence).	0	2	PICOSTs BLS 343, 366, and 367 have been evaluated together to identify any evidence looking at the interplay between the 3 CPR metrics. Two new observational studies on rate and depth— but not on recoil— since last ScopRev. Findings were consistent with current guidelines.	No
BLS 345 Rhythm check timing	2020 CoSTR	We suggest immediate resumption of chest compressions after shock delivery for adults in cardiac arrest in any setting (weak recommendation, very low– certainty evidence).	0	0	No new studies identified	No
BLS 346 Timing of CPR cycles (2 min vs other)	2020 CoSTR	We suggest pausing chest compressions every 2 minutes to assess the cardiac rhythm (weak recommendation, low- certainty evidence).	0	0	No new studies identified	No

Topic/PICO	Year(s) last updated	Existing treatment recommendation	RCTs since last review, n	Observational studies since last review, n	Key findings	Sufficient data to warrant SysRev?
BLS 347 Public access AED programs	2020 CoSTR	We recommend the implementation of PAD programs for patients with OHCA (strong recommendation, low- certainty evidence).	0	1	One observational study on a PAD program at Tokyo railroad stations presented significant benefits and cost- effectiveness in line with previous recommendations.	No
BLS 348 Check for circulation during BLS	2015 CoSTR	Outside of the ALS environment, where invasive monitoring is available, there are insufficient data about the value of a pulse check while performing CPR. We therefore do not make a treatment recommendation regarding the value of a pulse check.	0	0	No new studies since 2021. Some relevant papers showing the effectives of ultrasound to check for circulation were identified.	No
BLS 349 Rescuer fatigue in chest compression– only CPR	2015 CoSTR	We recommend no modification to current CCO-CPR guidelines for cardiac arrest to mitigate rescuer fatigue (strong recommendation, very low- certainty evidence).		0	No new clinical or simulation studies were identified that addressed the criteria. Simulation studies on manikins were identified. Consider reviewing CCO-CPR rest intervals in the future.	No
BLS 353 Harm from CPR to victims not in arrest	2020 CoSTR	We recommend that lay people initiate CPR for presumed cardiac arrest without concerns of harm to patients not in cardiac arrest (strong recommendation, very low-certainty evidence).	0	0	No new studies identified	No
from CPR	2015 CoSTR; 2020 ScopRev	Evidence supporting rescuer safety during CPR is limited. The few isolated reports of adverse effects resulting from the widespread and frequent use of CPR suggest that performing CPR is relatively safe. Delivery of a defibrillator shock with an AED during BLS is also safe. The incidence and morbidity of defibrillator- related injuries in the rescuers are low.		2	risk of physical injury reported by volunteer citizen responders dispatched to out-of- hospital cardiac arrest. One study found low risk of harm from defibrillation in rescuers wearing polyethylene gloves. Future reviews might focus specifically on safety of lay responder programs.	No
BLS 357 Hand position during compressions	2020 CoSTR	We suggest performing chest compressions on the lower half of the sternum on adults in cardiac arrest (weak recommendation,	0	0	No new studies addressing this question, but two simulation/ training studies highlighting	No

Topic/PICO	Year(s) last updated	Existing treatment recommendation	RCTs since last review, n	Observational studies since last review, n	Key findings	Sufficient data to warrant SysRev?
		very low-certainty evidence).			difficulties for lay rescuers in identifying correct hand position were identified.	
BLS 359 Dispatch-assisted compression- only versus conventional CPR	2019 CoSTR	We recommend that dispatchers provide compression-only CPR instructions to callers for adults with suspected OHCA (strong recommendation, low- certainty evidence).	0	0	No new studies identified	No
BLS 360 EMS chest compression- only vs conventional CPR	2020 CoSTR	We recommend that EMS providers perform CPR with 30 compressions to 2 breaths (30:2 ratio) or continuous chest compressions with positive pressure ventilation delivered without pausing chest compressions until a tracheal tube or supraglottic device has been placed (strong recommendation, high-certainty evidence). We suggest that, when EMS systems have adopted minimally interrupted cardiac resuscitation, this strategy is a reasonable alternative to conventional CPR for witnessed shockable OHCA (weak recommendation, very low– certainty evidence).			One new study since 2021. Median inspiratory tidal volume generated by manual chest compressions without ventilation was 20 mL (IQR 13, 28 mL) which were judged inadequate to provide adequate alveolar ventilation.	No
BLS 362 Compression-to- ventilation ratio	2017 CoSTR	We suggest a CV ratio of 30:2 compared with any other CV ratio in patients with cardiac arrest (weak recommendation, very low– quality evidence).	0	0	No new studies identified	No
BLS 363 CPR prior to defibrillation	2020 CoSTR	We suggest a short period of CPR until the defibrillator is ready for analysis and/or defibrillation in unmonitored cardiac arrest. (weak recommendation, low-certainty evidence).	0	0	No new studies identified. Observational data exploring AMSA and ETCO ₂ to guide defibrillation might be relevant for ALS.	No
BLS 366 Chest compression depth	2015 CoSTR; 2020 ScopRev	We recommend a chest compression depth of approximately 5 cm (2 in) (strong recommendation, low-certainty evidence) while avoiding excessive chest compression depths (greater than 6 cm [greater than 2.4 in] in an average	0	2	PICOSTs BLS 343, 366, and 367 have been evaluated together to identify any evidence looking at the interplay between the three CPR metrics. Two new observational	No

Topic/PICO	Year(s) last updated	Existing treatment recommendation	RCTs since last review, n	Observational studies since last review, n	Key findings	Sufficient data to warrant SysRev?
		adult) during manual CPR (weak recommendation, low-certainty evidence).			studies on rate and depth-but not recoil- since last ScopRev. Findings were consistent with	
BLS 367 Chest wall recoil	2015 CoSTR; 2020 ScopRev	We suggest that rescuers performing manual CPR avoid leaning on the chest between compressions to allow full chest wall recoil (weak recommendation, very low–quality evidence).	0	2	current guidelines. PICOSTs BLS 343, 366, and 367 have been evaluated together to identify any evidence looking at the interplay between the 3 CPR metrics. Two new observational studies on rate and depth–but not recoil–since last ScopRev. Findings were consistent with current guidelines.	No
BLS 368 Foreign body airway obstruction	2020 CoSTR	We suggest that back slaps be used initially in adults and children with a foreign- body airway obstruction and an ineffective cough (weak recommendation, very low- certainty evidence). We suggest that abdominal thrusts be used in adults and children (older than 1 year) with a foreign-body airway obstruction and an ineffective cough when backslaps are ineffective (weak recommendation, very low-certainty evidence). We suggest that rescuers consider the manual extraction of visible items in the mouth (weak recommendation, very low- certainty evidence). We suggest against the use of blind finger sweeps in patients with a foreign-body airway obstruction (weak recommendation, very low- certainty evidence). We suggest that appropriately skilled healthcare providers use Magill forceps to remove a foreign-body airway obstruction in patients with OHCA resulting from foreign body airway			A single new case series identified that describes 8 cases of the use of a vacuum cleaner to clear foreign body airway obstruction.	No

Topic/PICO	Year(s) last updated	Existing treatment recommendation	RCTs since last review, n	Observational studies since last review, n	Key findings	Sufficient data to warrant SysRev?
		recommendation, very low- certainty evidence). We suggest that chest thrusts be used in unconscious adults and children with a foreign-body airway obstruction (weak recommendation, very low- certainty evidence). We suggest that bystanders undertake interventions to support foreign-body airway obstruction removal as soon as possible after recognition (weak recommendation, very low-certainty evidence). We suggest against the routine use of suction-based airway clearance devices (weak recommendation,			34	
BLS 370 Firm surface for CPR	2020 CoSTR	very low-certainty evidence). We suggest performing chest compressions on a firm surface when possible (weak recommendation, very low certainty evidence) During in-hospital cardiac arrest, we suggest, where a bed has a CPR mode which increases mattress stiffness, it should be activated (weak recommendation, very low certainty of evidence).	0	3	Three additional manikin RCTs were identified, evaluating CPR quality with a backboard, on a dentist chair, and on a dynamic mattress.	No
8		During in-hospital cardiac arrest, we suggest against moving a patient from a bed to floor, to improve chest compression depth (weak recommendation, very low certainty of evidence). During in-hospital cardiac arrest, we suggest in favour of either a backboard or no- backboard strategy, to improve chest compression depth, (Conditional recommendation, very low certainty of evidence).				

Topic/PICO	Year(s) last updated	Existing treatment recommendation	RCTs since last review, n	Observational studies since last review, n	Key findings	Sufficient data to warrant SysRev?
BLS 372 In-hospital chest compression- only CPR vs conventional CPR	2017 CoSTR	Whenever tracheal intubation or a supraglottic airway is achieved during in-hospital CPR, we suggest that providers perform continuous compressions with positive pressure ventilation delivered without pausing chest compressions (weak recommendation, very low– certainty evidence).	0	0	No new studies identified	No
BLS 373 Analysis of rhythm during chest compression	2020 CoSTR	We suggest against the routine use of artifact- filtering algorithms for analysis of electrocardiographic rhythm during CPR (weak recommendation, very low– certainty evidence).	0	2	Two new observational studies since last SysRev. Analysis during CPR led to fewer pauses in chest compressions.	Yes
		We suggest that the usefulness of artifact- filtering algorithms for analysis of electrocardiographic rhythm during CPR be assessed in clinical trials or research initiatives (weak recommendation, very low– certainty evidence).				
BLS 374 Alternative compression techniques (cough, precordial thump, fist pacing)	2020 CoSTR	We recommend against the routine use of cough CPR for cardiac arrest (strong recommendation, very low– certainty evidence). We suggest that cough CPR may be considered only as a temporizing measure in exceptional circumstance of a witnessed, monitored IHCA (eg, in a cardiac catheterization laboratory) if a nonperfusing rhythm is recognized promptly before loss of consciousness (weak recommendation, very low– certainty evidence). We recommend against fist	0	0	No new studies identified	No
		pacing for cardiac arrest (strong recommendation, very low-certainty evidence). We suggest that fist pacing may be considered only as a				

Topic/PICO	Year(s) last updated	Existing treatment recommendation	RCTs since last review, n	Observational studies since last review, n	Key findings	Sufficient data to warrant SysRev?
		temporizing measure in the exceptional circumstance of a witnessed, monitored IHCA (eg, in a cardiac catheterization laboratory) due to bradyasystole if such a nonperfusing rhythm is recognized promptly before loss of consciousness (weak recommendation, very low– certainty evidence). We recommend against the use of a precordial thump for cardiac arrest (strong recommendation, very low–			34	
DL 0.546	2010 C (TT)	certainty evidence).	0			N
BLS 546 Tidal volumes and ventilation rates BLS 547 Lay rescuer chest compression– only CPR vs conventional CPR	2010 CoSTR 2020 CoSTR	For mouth-to-mouth ventilation for adult victims using exhaled air or bag- mask ventilation with room air or oxygen, it is reasonable to give each breath within a 1-second inspiratory time and with an approximate volume of 600 mL to achieve chest rise. It is reasonable to use the same initial tidal volume and rate in patients regardless of the cause of the cardiac arrest. We continue to recommend that bystanders perform chest compressions for all patients in cardiac arrest (good practice statement). We suggest that bystanders who are trained, able, and willing to give rescue breaths and chest	0	0	No new studies identified. Studies identified evaluating tidal volumes during mechanical ventilation, and after ROSC.	No
8		breaths and chest compressions do so for all adult patients in cardiac arrest (weak recommendation, very low– certainty evidence).				
BLS 661 Starting CPR (C- A-B vs A-B-C)	2020 CoSTR	We suggest commencing CPR with compressions rather than ventilation in adults with cardiac arrest (weak recommendation, very low–certainty evidence).	0	0	No new studies identified	No
BLS 740 Dispatcher recognition of cardiac arrest	2020 CoSTR	We recommend that dispatch centers implement a standardized algorithm and/or standardized criteria	1	6	One RCT where calls processed using machine learning recognized arrest	Yes

Topic/PICO	Year(s) last updated	Existing treatment recommendation	RCTs since last review, n	Observational studies since last review, n	Key findings	Sufficient data to warrant SysRev?
		to immediately determine if a patient is in cardiac arrest at the time of emergency call (strong recommendation, very low-certainty evidence). We suggest that dispatch centers monitor and track diagnostic capability. We suggest that dispatch centers look for ways to optimize sensitivity (minimize false negatives). We recommend high-quality		6	93.1% vs 90.5% in control group. (p=0.15). Six observational studies evaluated various interventions or compared different systems with regard to recognition of cardiac arrest.	Systev.
		research that examines gaps in this area.				
BLS 811 Resuscitation care for suspected opioid- associated emergencies	2020 CoSTR	We suggest that CPR be started without delay in any unconscious person not breathing normally and that naloxone be used by lay rescuers in suspected opioid-related respiratory or circulatory arrest (weak recommendation based on expert consensus).		0	No new studies identified	No
BLS 1527 CPR prior to call for help	2020 CoSTR	We recommend that a lone bystander with a mobile phone should dial EMS, activate the speaker or other hands-free option on the mobile phone, and immediately begin CPR with dispatcher assistance, if required (strong recommendation, very low– certainty evidence).	0	0	No new studies identified	No
BLS Video- Based Dispatch Systems	2021 CoSTR	We suggest that the usefulness of video-based dispatch systems be assessed in clinical trials or research initiatives (weak recommendation, very low– certainty evidence).	0	2	Two additional observational studies identified. One study reported an association between video dispatch and survival. The other reported better CPR quality with video dispatch.	No
BLS Head-up CPR	2021 CoSTR	We suggest against the routine use of head-up CPR during CPR (weak recommendation, very low– certainty evidence).	0	0	No new studies identified. Observational data exploring AMSA and ETCO ₂ to guide defibrillation might be relevant for ALS.	No

Topic/PICO	Year(s) last updated	Existing treatment recommendation	RCTs since last review, n	Observational studies since last review, n	Key findings	Sufficient data to warrant SysRev?
		We suggest that the				
		usefulness of head-up CPR				
		during CPR be assessed in				
		clinical trials or research				
		initiatives (weak				
		recommendation, very low-				
		certainty evidence).				

AED indicates automated external defibrillator; ALS, advanced life support; AMSA, amplitude spectral area; BLS, basic life support; CCO-CPR, chest compression–only CPR; CPR, cardiopulmonary resuscitation; CV, compression-to-ventilation; EMS, emergency medical services; EvUp, evidence update; HIV, human immunodeficiency virus; IQR, interquartile range; HBV, hepatitis B virus; IHCA, in-hospital cardiac arrest; OHCA, out-of-hospital cardiac arrest; PAD, public access defibrillation; PICO, population, intervention, comparator, outcome; PICOST, population, intervention, comparator, outcomes, study design, timeframe; RCT, randomized controlled trial; SARS, severe acute respiratory syndrome; ScopRev, scoping review. *Complete Evidence Updates are in Appendix C.

ADVANCED LIFE SUPPORT TASK FORCE

Temperature Management After Cardiac Arrest (SysRev)

Rationale for Review

Active temperature control has been a cornerstone of care for those who remain comatose after cardiac arrest. This SysRev was prompted by the publication of 2 large randomized trials

comparing different strategies of temperature management since the previous ILCOR review in

2015.⁵⁶ A SysRev was therefore conducted on behalf of the Advanced Life Support (ALS) Task

Force (PROSPERO; Registration CRD42020217954).⁵⁷ The complete CoSTR can be found

online.58

Population, Intervention, Comparator, Outcome, Study Design, and Time Frame

For this PICOST, 6 comparisons were included. Population, outcome, study design, and time frame included were the same for all comparisons.

Population: Adults in Any Setting (In-Hospital or Out-of-Hospital) With Cardiac Arrest

Use of TTM

- **Intervention:** TTM at 32°C to 34°C
- **Comparator:** No TTM (normothermia/fever prevention)

Timing

- Intervention: TTM induction before a specific time point (eg, prehospital or intra-cardiac arrest, ie, before ROSC)
- Comparator: TTM induction after that specific time point

Temperature

- Intervention: TTM at a specific temperature (eg, 33°C)
- **Comparator:** TTM at a different specific temperature (eg, 36°C)

Duration

- Intervention: TTM for a specific duration (eg, 48 hours)
- **Comparator:** TTM at a different specific duration (eg, 24 hours)

Method

- Intervention: TTM with a specific method (eg, external)
- **Comparator:** TTM with a different specific method (eg, internal)

Rewarming

- Intervention: TTM with a specific rewarming rate
- Comparator: TTM with a different specific rewarming rate or no specific rewarming rate

- Outcome:
 - Critical: Survival and favorable neurologic/functional outcome at discharge/30 days or longer
- **Study design:** Controlled trials in humans, including RCTs and nonrandomized trials (eg, pseudo-randomized trials). Observational studies, ecological studies, case series, case reports, reviews, abstracts, editorials, comments, letters to the editor, or unpublished studies were not included. Studies assessing cost-effectiveness were included for a descriptive summary.
- **Time frame:** All years and all languages were included if there was an English abstract. The literature search was conducted on October 30, 2020, and updated for clinical trials on June 17, 2021.

Consensus on Science

The search identified 2328 unique records, of which 139 full-text articles were assessed for eligibility. Manuscripts reporting data from 32 trials published between 2001 and 2021 were included. The search identified 1 cost-effectiveness analysis. We did not identify any trials assessing rewarming rate.

A note on terminology: In the SysRev, studies were pooled such that the intervention labeled as *TTM* in the PICO question was targeting hypothermia (32°C–34°C), and the comparator labeled as *no TTM* was targeting normothermia or fever prevention. To avoid confusion and accurately reflect the content of the included trials, we have replaced the term *TTM* with *temperature control with hypothermia*, and we replaced *no TTM* with *temperature control with normothermia or fever prevention*. To provide additional clarity for interpreting future clinical trials, SysRevs, and CoSTRs, the Task Force proposes new ILCOR definitions for the various forms of temperature control in post-cardiac arrest care under Justification and

Evidence-to-Decision Framework Highlights.

Use of temperature control with hypothermia: We identified 6 RCTs comparing the use of temperature control with hypothermia to temperature control with normothermia or fever prevention.⁵⁹⁻⁶⁴ No differences were found across any outcome, and key results are presented in Table 7.

 Table 7. Summary of Key Findings From 6 RCTs Comparing Temperature Control With

 Hypothermia to Temperature Control With Normothermia or Fever Prevention

Outcomes (importance)	Participants,	Certainty of	RR	Anticipated
	studies	evidence (GRADE)	(95% CI)	absolute effects
Survival to hospital discharge (critical)	2836 patients, 5 RCTs ^{59,60,62-64}	Low	1.12 (0.92– 1.35)	55 patients more/1000 (37 fewer–161 more)
Favorable neurologic outcome at discharge or 30 days (critical)	2139 patients, 3 RCTs ^{59,60,62}	Low	1.30 (0.83– 2.03)	115 patients more/1000 (65 fewer–395 more)
Survival to 90 or 180 days (critical)	2776 patients, 5 RCTs ⁶⁰⁻⁶⁴	Low	1.08 (0.89– 1.30)	35 patients more/1000 (48 fewer–130 more)
Favorable neurologic outcome at 90 or 180 days (critical)	2753 patients, 5 RCTs ⁶⁰⁻⁶⁴	Low	1.21 (0.91–1.61)	76 patients more/1000 (33 fewer-222 more)

GRADE indicates Grading of Recommendations Assessment, Development, and Evaluation; RCT, randomized controlled trial; and RR, risk ratio.

Use of prehospital cooling: We identified 10 RCTs⁶⁵⁻⁷⁴ comparing use of prehospital

cooling to no prehospital cooling after out-of-hospital cardiac arrest (OHCA), and no differences

in critical outcomes were found (Table 8).

Outcomes (importance)	Participants, studies	Certainty of evidence (GRADE)	RR (95% CI)	Anticipated absolute effects
Survival to hospital discharge (critical)	4808 patients, 10 RCTs ⁶⁵⁻⁷⁴	Moderate	1.01 (0.92– 1.11)	2 patients more/1000 (19 fewer–27 more)
Favorable neurologic outcome at discharge (critical)	4666 patients, 9 RCTs ^{59,65-71,73,74}	Moderate	1.00 (0.90– 1.11)	0 patients fewer/1000 (22 fewer-24 more)

Table 8. Key Outcomes From RCTs of Prehospital Cooling

GRADE indicates Grading of Recommendations Assessment, Development, and Evaluation; RCT, randomized controlled trial; and RR, risk ratio.

Specific temperature comparisons: A single large RCT,⁷⁵ now known as the TTM trial,

compared temperature control at 33°C with temperature control at 36°C and found no

statistically significant difference in patient outcomes. Key results are presented in Table 9. Two

much smaller RCTs compared management at 32°C versus 34°C, 32°C versus 33°C, and 33°C

versus 34°C, finding no statistically significant difference for any of the comparisons.^{76,77}

Table 9. Effect on Critical Outcomes of Temperature Control at 36°C Compared With $33^{\circ}C$

Outcomes (importance)	Participants, studies	Certainty of evidence (GRADE)	RR (95% CI)	Anticipated absolute effects
Favorable neurologic outcome	933 patients,	Low	0.98 (0.86–	10 patients
at 180 days (critical)	1 RCT ⁷⁵		1.13)	fewer/1000 (68
				fewer-63 more)
Survival at 180 days (critical)	939 patients,	Low	0.99 (0.88–	5 patients
	1 RCT ⁷⁵		1.12)	fewer/1000 (63
				fewer-63 more)
Favorable neurologic outcome	938 patients,	Low	0.96 (0.83–	18 patients
at discharge (critical)	1 RCT ⁷⁵		1.11)	fewer/1000 (78
				fewer-50 more)

GRADE indicates Grading of Recommendations Assessment, Development, and Evaluation; RCT, randomized controlled trial; and RR, risk ratio.

Duration of cooling: A single RCT⁷⁸ including 451 patients found no statistically

significant difference in survival or favorable neurologic outcome at 6 months between 48 hours

and 24 hours of temperature control with hypothermia.

Method of temperature control: Three RCTs⁷⁹⁻⁸¹ including a total of 523 patients found

no difference in survival or favorable neurologic outcome at hospital discharge/28 days with

endovascular cooling compared with surface cooling devices.

Rewarming: No studies were identified evaluating rewarming strategies.

Treatment Recommendations

We suggest actively preventing fever by targeting a temperature \leq 37.5°C for patients who remain comatose after ROSC from cardiac arrest (weak recommendation, low-certainty evidence).

Whether subpopulations of cardiac arrest patients may benefit from targeting hypothermia at 32°C to 34°C remains uncertain.

Comatose patients with mild hypothermia after ROSC should not be actively warmed to achieve normothermia (good practice statement).

We recommend against the routine use of prehospital cooling with rapid infusion of large volumes of cold IV fluid immediately after ROSC (strong recommendation, moderate-certainty evidence).

We suggest surface or endovascular temperature control techniques when temperature control is used in comatose patients after ROSC (weak recommendation, low-certainty evidence).

When a cooling device is used, we suggest using a temperature control device that includes a feedback system based on continuous temperature monitoring to maintain the target temperature (good practice statement).

We suggest active prevention of fever for at least 72 hours in post–cardiac arrest patients who remain comatose (good practice statement).

Justification and Evidence-to-Decision Framework Highlights

The complete evidence-to-decision table is provided in Appendix A.

In making these recommendations, the ALS Task Force agreed that we should continue to recommend active temperature control to prevent fever in post–cardiac arrest patients, although the evidence for this is limited.

The ALS Task Force also discussed the terminology of temperature control and felt that current terminology is somewhat problematic. The term *TTM* on its own is not helpful, and it is preferable to use the terms *active temperature control*, *hypothermia*, *normothermia*, or *fever prevention*. The ALS Task Force has also avoided use of the term *TTM* because this term is now very closely linked with the TTM and TTM2 RCTs. To provide additional clarity for interpreting future clinical trials, SysRevs, and CoSTRs, the Task Force proposes the following terms be used:

- *Temperature control with hypothermia*: Active temperature control with the target temperature below the normal range
- *Temperature control with normothermia*: Active temperature control with the target temperature in the normal range
- *Temperature control with fever prevention*: Monitoring temperature and actively preventing and treating temperature above the normal range
- No temperature control: No protocolized active temperature control strategy

The majority of the ALS Task Force favored fever prevention as a strategy over hypothermia, on the basis of evidence and because this intervention requires fewer resources and had fewer side effects than hypothermia treatment. The specifics of how normothermia was achieved were thought important, and the Task Force noted that in the TTM2 trial⁶⁰ pharmacological measures (acetaminophen), uncovering the patient, and lowering ambient temperature were used to maintain a temperature of 37.5°C (99.5°F) or lower in the normothermia/fever prevention group. If the temperature was higher than 37.7°C (99.9°F), a cooling device was used and set at a target temperature of 37.5°C (99.5°F). Ninety-five percent of patients in the hypothermia group and 46% in the fever prevention group received temperature control with a device.

Several members of the task force wanted to leave open the option to use hypothermia (33°C). The discussions included the following:

- No trials have shown that normothermia is better than hypothermia.
- Among nonshockable cardiac arrest patients, the Hyperion trial⁶³ showed better survival with favorable functional outcome in the hypothermia group (although 90-day survival was not significantly different, and the Fragility Index was only 1).
- The largest temperature control studies have mainly included cardiac arrests with a primary cardiac cause, and this may not reflect the total population of post–cardiac arrest patients treated.
- Concerns were raised that the TTM2 trial cooling rates, which were similar to other studies, were too slow and that the time to target temperature was outside the therapeutic window.
- There was a unanimous desire to leave open the opportunity for further research on postcardiac arrest hypothermia.
- Finally, there were concerns that poor implementation of temperature control may lead to patient harm—for example, the publication of the TTM trial in 2013 may have led to some clinicians abandoning temperature control after cardiac arrest, which in turn was associated with worse outcomes.⁸²⁻⁸⁴
- The comparison between 33°C versus 36°C was included in a sensitivity analysis of 33°C versus normothermia/fever prevention—this did not change the point estimates.

The task force made a good practice statement supporting the avoidance of active warming of patients who have passively become mildly hypothermic (eg, 32°C–36°C) immediately after ROSC because there was concern that rewarming may be a harmful intervention. In the TTM2 trial, patients in the normothermia/fever prevention arm who had an initial temperature above 33°C were not actively warmed.⁶⁰ In the Hyperion trial, patients allocated to normothermia whose temperature was below 36.5°C at randomization were warmed at 0.25°C to 0.5°C/hour and then maintained at 36.5°C to 37.5°C.⁶³

The recommendation about prehospital cooling is unchanged from 2015 because we found no evidence that any method of prehospital cooling improved outcomes. The ALS Task Force recommends against the rapid infusion of large volumes of cold fluid immediately after ROSC in the prehospital setting because of higher rates of rearrest and pulmonary edema with that intervention in the largest of the included studies.⁷¹

There was no consensus on whether a feedback (versus no feedback) cooling device should be used routinely, so this was added as a good practice statement because there is no evidence that this approach improves outcomes. There was consensus that temperature should be continually monitored by the cooling device to enable active control of temperature and to maintain a stable temperature. There was a comment that endovascular cooling may be superior for temperature control—there are 2 recent SysRevs with conflicting conclusions.^{85,86}

Our treatment recommendation on duration of temperature control is a good practice statement based on trials controlling temperature for at least 72 hours in those patients who remained sedated or comatose.

Task Force Knowledge Gaps

• Whether fever prevention changes outcome compared with no temperature control

- The effect of temperature control after extracorporeal CPR
- The effect of temperature control after in-hospital cardiac arrest (IHCA)
- Whether there is a therapeutic window within which hypothermic temperature control is effective in the clinical setting
- If a therapeutic window exists, whether there are clinically feasible cooling strategies that can rapidly achieve therapeutic target temperatures within the therapeutic window
- Whether the clinical effectiveness of hypothermia is dependent on providing the appropriate dose (target temperature and duration) on the basis of the severity of brain injury
- Whether there are subsets of post–cardiac arrest patients who would benefit from hypothermic temperature control as currently practiced
- Whether temperature control using a cooling device with feedback is more effective than temperature control without a feedback-controlled cooling device

Point-of-Care Ultrasound as a Diagnostic Tool During Cardiac Arrest (SysRev)

Rationale for Review

A SysRev of the diagnostic accuracy of point-of-care ultrasound (POCUS) was prioritized by the ALS Task Force because ultrasound use during CPR continues to grow in popularity, often with the goal of identifying a reversible cause of arrest that can then be treated. This CoSTR focuses entirely on POCUS as a diagnostic tool and does not replace the 2021 CoSTR on POCUS as a prognostic tool during CPR.⁸⁷ The diagnostic SysRev was registered on PROSPERO (registration CRD42020205207),⁸⁸ and the full text of the CoSTR can be found online.⁸⁹

Population, Intervention, Comparator, Outcome, Study Design, and Time Frame

- **Population:** Adults with cardiac arrest in any setting
- **Intervention:** A particular finding on POCUS during CPR
- **Comparator:** An external confirmatory test or process including some component other than POCUS
- Outcome: Important—A specific etiology or pathophysiologic state that may have led to cardiac arrest
- **Study design:** Randomized and nonrandomized trials, cohort studies (prospective and retrospective), and case control studies with data on both POCUS findings and an external reference standard to contribute to a contingency table (ie, true positive, false positive, false negative, true negative). Animal studies, ecological studies, case series, case reports, narrative reviews, abstracts, editorials, comments, letters to the editor, or unpublished studies were not included.
- **Time frame:** All years and all languages were included if there was an English abstract. The literature search was updated through October 6, 2021.

Consensus on Science

The overall certainty of evidence was rated as very low for diagnosis of all target conditions primarily because of risk of bias, inconsistency, and imprecision. Because of critical risk of bias across all included studies and a high degree of clinical heterogeneity, no metaanalyses could be performed and individual studies are difficult to interpret.

Only a single observational study⁹⁰ provided sufficient information to calculate sensitivity and specificity of POCUS for specific pathophysiologic states, and these results are summarized in Table 10.

Target condition	Participants, n	Certainty of evidence (GRADE)	Sensitivity (95% CI)	Specificity (95% CI)
Cardiac tamponade	48		1.00 (0.29–1.00)	1.00 (0.88–1.00)
Pulmonary embolism	48	Very low	1.00 (0.16-1.00)	0.97 (0.82-0.99)
Myocardial infarction	48	Very low	0.86 (0.57-0.98)	0.94 (0.71-0.99)

Table 10. Sensitivity and Specificity of POCUS for 3 Potential Arrest Etiologies From a Single Study*⁹⁰

GRADE indicates Grading of Recommendations Assessment, Development, and Evaluation; and POCUS, point-of-care ultrasound.

*The reference was autopsy and/or clinical adjudication in all cases.

For the target conditions of cardiac tamponade, pericardial effusion, pulmonary embolism, myocardial infarction, aortic dissection, and hypovolemia, 11 observational studies⁹¹⁻¹⁰¹ with high risk of bias provided sufficient data to estimate individual positive predictive values only among small subsets of between 1 and 10 patients with OHCA, IHCA, or intra-operative cardiac arrest. Individual estimates of positive predictive value have very wide CIs and are difficult to interpret in the context of the very small subsets of subjects.

Treatment Recommendations

We suggest against routine use of point of care ultrasound during CPR to diagnose reversible causes of cardiac arrest (weak recommendation, very low–certainty evidence).

We suggest that if point of care ultrasound can be performed by experienced personnel without interrupting CPR, it may be considered as an additional diagnostic tool when clinical suspicion for a specific reversible cause is present (weak recommendation, very low–certainty evidence).

Any deployment of diagnostic point of care ultrasound during CPR should be carefully considered and weighed against the risks of interrupting chest compressions and misinterpreting the sonographic findings (good practice statement).

Justification and Evidence-to-Decision Framework Highlights

In making these recommendations, the ALS Task Force discussed that the inconsistent definitions and terminology used for sonographic evidence of specific causes of cardiac arrest was the primary source of clinical heterogeneity and that the establishment of uniform definitions and terminology to describe sonographic findings of reversible causes of cardiac arrest is very important.

The identified studies all have high risk of bias related to selection bias and ascertainment bias. Verification bias (when availability or use of the reference standard is influenced by test positive or test negative status) was present in all but one of the included studies. We strongly encourage subsequent investigations of POCUS during cardiac arrest to use methodology that mitigates these risks of bias, including standardized definition of time intervals for imaging acquisition, assessment of image quality, and experience of the sonographer, among others.

The task force discussed that the diagnostic utility of POCUS is affected by the clinical context. For example, a postoperative cardiac surgery patient with cardiac arrest may have a higher pretest probability for specific causes such as cardiac tamponade, pulmonary embolism, or acute hemorrhage. Conversely, the diagnostic utility of POCUS may be more limited in the context of undifferentiated cardiac arrest in the out-of-hospital setting.

Evidence showing that POCUS may increase the length of pauses in chest compressions was discussed as a very important consideration, especially given the lack of evidence for benefit from use of POCUS.^{102,103} Some studies suggest transesophageal echocardiography can eliminate this problem.¹⁰⁴⁻¹⁰⁶

The task force noted that POCUS findings that may indicate myocardial infarction or pulmonary embolism outside of cardiac arrest may be much less specific during CPR. For example, wall motion abnormalities may result from the ischemia of a low-flow state or a preexisting infarct, as opposed to a de novo myocardial infarction. Not treating a reversible cause of cardiac arrest risks failure of the resuscitation attempt or more severe post–cardiac arrest injury. Treating an incorrect diagnosis suggested by POCUS risks iatrogenic injury or delayed identification of the true underlying cause.

Because of the resources involved and the use of POCUS in current clinical practice, the task force expects that most diagnostic applications of POCUS will occur in a hospital-based setting as opposed to the prehospital setting.

The prognostic utility of POCUS to predict clinical outcomes is covered in a separate PICOST.⁸⁹

Task Force Knowledge Gaps

- The diagnostic accuracy of POCUS during cardiac arrest using methodology that sufficiently minimizes risk of bias, especially selection bias, ascertainment bias, and verification bias
- Uniform definitions and terminology to describe sonographic findings of reversible causes of cardiac arrest or the associated reference standards
- The inter-rater reliability of POCUS diagnostic findings during cardiac arrest
- Resource requirements, cost-effectiveness, equity, acceptability, or feasibility of POCUS use during CPR
- Whether use of POCUS during CPR changes patient outcomes

Use of Vasopressin and Corticosteroids During Cardiac Arrest (SysRev)

Rationale for Review

This topic was prioritized by the ALS Task Force for consideration following the publication of a recent RCT¹⁰⁷ and a subsequent SysRev with individual patient data metaanalysis, which was identified as suitable for adolopment.¹⁰⁸ The full text of the CoSTR can be found online.¹⁰⁹

Population, Intervention, Comparator, Outcome, Study Design, and Time Frame

- **Population:** Adults with cardiac arrest in any setting
- Intervention: Administration of the combination of vasopressin and corticosteroids during CPR
- Comparator: Not using vasopressin and corticosteroids during CPR
- Outcome:
 - Critical: Health-related quality of life; survival with favorable functional outcome at discharge, 30, 60, 90 or 180 days and/or 1 year; survival at discharge, 30, 60, 90 or 180 days and/or 1 year
 - Important: ROSC
- **Study design:** RCTs were eligible for inclusion. Observational studies and unpublished studies (eg, conference abstracts, trial protocols) were excluded.
- Time frame: All years and all languages were included if there was an English abstract.

Consensus on Science

Three RCTs^{107,110,111} were identified, all of which included patients with IHCA only.

In-Hospital Cardiac Arrest

One of the included trials,¹⁰⁷ which enrolled 501 patients, assessed health-related quality of life at 90-days measured by the EuroQol 5 Dimension 5 Level tool. Data were available from all 44 patients who survived to 90 days, and there was no difference in the EuroQol 5 Dimension 5 Level.

Results from the meta-analysis of the 3 included RCTs for other clinical outcomes are presented in Table 11.

Outcomes (importance)	Participants, studies	Certainty of evidence (GRADE)	OR (95% CI)	Anticipated absolute effects
Favorable functional outcome at hospital discharge (critical)	869 patients, 3 RCTs ^{107,110,111}	Low	1.64 (0.99– 2.72)	37 patients more/1000 (1 fewer–93 more)
Survival to discharge (critical)	869 patients, 3 RCTs ^{107,110,111}	Low	1.39 (0.90– 2.14)	34 patients more/1000 (9 fewer–91 more)
ROSC (important)	869 patients, 3 RCTs ^{107,110,111}	Moderate	2.09 (1.54– 2.84)	181 more/1000 (108 more–249 more)

 Table 11. Meta-Analysis of Effect of Vasopressin and Corticosteroids on Clinical Outcomes

GRADE indicates Grading of Recommendations Assessment, Development, and Evaluation; OR, odds ratio; RCT, randomized controlled trials; and ROSC, return of spontaneous circulation.

Out-of-Hospital Cardiac Arrest

We did not find any evidence specific to OHCA. Therefore, all the results for this

population were the same, with the evidence downgraded for indirectness for the OHCA

population.

Treatment Recommendations

We suggest against the use of the combination of vasopressin and corticosteroids in

addition to usual care for adult in-hospital cardiac arrest due to low confidence in effect

estimates for critical outcomes (weak recommendation, low to moderate-certainty evidence).

We suggest against the use of the combination of vasopressin and corticosteroids in addition to usual care for adult out-of-hospital cardiac arrest (weak recommendation, very low-to low-certainty evidence).

Justification and Evidence-to-Decision Framework Highlights

In making these recommendations, the ALS Task Force considered that the intervention (vasopressin and corticosteroids) given intra-arrest improved ROSC, but this did not clearly translate into an effect on other outcomes.

In all studies, the combination of vasopressin and corticosteroids was administered in addition to standard intra-arrest treatments, including epinephrine and defibrillation. The task force noted that the earlier 2 studies^{110,111} reported improvements in outcomes beyond ROSC (eg, survival, favorable neurologic outcome), but these effects were not observed in the latest study.¹⁰⁷ The earlier 2 studies included post-ROSC corticosteroids in addition to the intra-arrest vasopressin and steroids, which was not the case in the more recent study. The earlier 2 studies were considered by the ILCOR ALS Task Force in 2015¹¹² to be not sufficiently generalizable (eg, high rate of asystolic cardiac arrest, low baseline survival rate) for the task force to make a treatment recommendation supporting the use of the combination of vasopressin and corticosteroids.

The task force noted that the incorporation of these drugs into ALS treatment would present practical challenges because the addition of new drugs would add complexity to current treatment protocols. This would particularly be the case in out-of-hospital settings and systems where corticosteroids are only available in powdered form, requiring reconstitution before use. This was thought not to be warranted at this time, given the low confidence in effect estimates

for any outcomes beyond ROSC, as well as the fact that only the earlier trials including post-ROSC steroids reported any difference in survival outcomes.

The task force noted that time to drug administration was longer in the trial when this was led by the cardiac arrest team¹⁰⁷ rather than dedicated research staff.^{110,111} Time to drug administration would likely be markedly longer in the prehospital setting. We discussed the potential interaction between vasopressin and corticosteroids and the current uncertainty as to whether either drug alone or the combination was driving the observed effect on ROSC.

The potential value of an improvement in ROSC when there was no observed effect on longer-term outcomes was discussed. The task force has previously suggested some other interventions without a clear survival benefit (eg, amiodarone or lidocaine for refractory shockable rhythm). Those drugs, however, appear to have a survival benefit in some subgroups (ie, witnessed arrest), which was not clearly the case for vasopressin and steroids.

Task Force Knowledge Gaps

- Whether the combination of vasopressin and corticosteroids, in addition to current standard resuscitation, improves survival or favorable functional outcome
- Whether improvement in ROSC with the combination of vasopressin and corticosteroids is a result of the specific combination of drugs or if only one of the medications is producing the effect
- How timing of administration of the combination of vasopressin and corticosteroids during cardiac arrest modifies the effect

Post-Cardiac Arrest Coronary Angiography (SysRev)

Rationale for Review

A SysRev was conducted and a new CoSTR was generated on this topic for 2021.⁸⁷ The search was updated this year to incorporate a new RCT on this topic and to identify any other relevant studies since publication of the previous SysRev. The original review was registered on PROSPERO (registration CRD 42020160152).¹¹³

Population, Intervention, Comparator, Outcome, Study Design, and Time Frame

- **Population:** Unresponsive adults (>18 years of age) with ROSC after cardiac arrest
- Intervention: Emergent or early (2–6 hours) coronary angiography (CAG) with percutaneous coronary intervention (PCI) if indicated
- **Comparator:** Delayed CAG (within 24 hours)
- Outcome:
 - Critical: Survival to hospital discharge, functional survival to ICU or hospital discharge, survival at 30, 90, and 180 days, functional survival at 30, 90, and 180 days
 - Important: Survival at 24 hours, coronary artery bypass graft, successful PCI, PCI frequency and adverse events of brain damage, recurrent cardiac arrest, arrhythmias, pneumonia, bleeding, acute worsening renal failure, injury or replacement therapy, shock, sepsis
- Study design: RCTs and nonrandomized studies (non-RCTs, interrupted time series, controlled before-and-after studies, cohort studies) were eligible for inclusion for the 2021
 CoSTR. Unpublished studies (eg, conference abstracts, trial protocols), case series, and case

reports were excluded. For this 2022 update, only additional RCTs published since the prior search were included.

• **Time frame:** All years and all languages were included if there was an English abstract. The initial search was run on April 29, 2020. For the 2022 update, the search was re-run on January 7, 2022.

Consensus on Science

One new RCT and 1 secondary analysis of a previous RCT were identified.^{114,115} This enabled additional meta-analyses of several critical outcomes for patients with no ST-segment elevation on a post-ROSC electrocardiogram, and these results are included here by subgroup of initial rhythm.

All Initial Rhythms and No ST-Segment Elevation

No statistically significant difference was noted in any of the critical outcomes comparing early CAG with late or no CAG. The updated results are presented in Table 12. Previously reported results from single studies are included in the full online CoSTR.¹¹⁶

With Any Initial Knythin and No 51-Segment Elevation After Cartiac Affest					
Outcomes (importance)	Participants, studies	Certainty of evidence (GRADE)	RR (95% CI)	Anticipated absolute effects	
Functional survival at 30 days (critical)	629 patients, 2 RCTs ^{114,117}	Low	0.92 (0.66–1.29)	30 patients fewer/1000 (146 fewer–103 more)	
Survival to 30 days (critical)	629 patients, 2 RCTs ^{114,117}	Low	0.96 (0.70–1.33)	18 patients fewer/1000 (174 fewer–135 more)	
PCI frequency (important) Intention to treat analysis (all randomized patients)	629 patients, 2 RCTs ^{114,117}	High	1.37 (1.07– 1.74)	94 more/1000 (20 more–174 more)	
PCI frequency (important)	485 patients, 2 RCTs ^{114,117}		0.86 (0.68– 1.07	62 fewer/1000 (143 fewer–28 more)	

Table 12. Meta-analysis Results for Effect of Early Versus Late or No CAG in PatientsWith Any Initial Rhythm and No ST-Segment Elevation After Cardiac Arrest

Outcomes (importance)	Participants, studies	Certainty of evidence (GRADE)	RR (95% CI)	Anticipated absolute effects
Per protocol analysis (only				
patients who received				
angiography)				

CAG indicates coronary angiography; GRADE, Grading of Recommendations Assessment, Development, and Evaluation; PCI, percutaneous intervention; RCTs, randomized controlled trials; and RR, relative risk.

Shockable Initial Rhythm, No ST-Segment Elevation

The new RCT¹¹⁴ enrolled patients with all initial rhythms but provided a subgroup

analysis of patients with initial shockable rhythm. A meta-analysis including the new data from

the RCT as well as new data from a long-term outcome analysis of a previous trial¹¹⁵ is presented

in Table 13. Results from single studies and all results with no new data from the 2021 CoSTR

are available in the full online CoSTR.¹¹⁶

Table 13. Meta-analysis Results for Effect of Early Versus Late or No CAG in PatientsWith Initial Shockable Rhythm and No ST-Segment Elevation After Cardiac Arrest

Outcomes (importance)	Participants, studies	Certainty of evidence (GRADE)	RR (95% CI)	Anticipated absolute effects
Survival to hospital	552 patients,	Low	0.96	25 patients
discharge/30 days	2 RCTs ^{114,118}		(0.84 - 1.10)	fewer/1000 (112
(critical)				fewer-55 more)
Quality of life per RAND-	235 patients,	Very low	No difference	Not applicable
36 physical score (critical)	1 RCT ¹¹⁵		in mean values	
Quality of life per RAND-		Very low	No difference	Not applicable
36 mental score (critical)	1 RCT ¹¹⁵		in mean values	

GRADE indicates Grading of Recommendations Assessment, Development, and Evaluation; RAND-36, RAND Corporation 36-Item Short Form Survey; RCT, randomized controlled trial; RR, relative risk; MD, mean difference; IQR, interquartile range

All Initial Rhythms With ST-Segment Elevation

No new evidence was identified for this group. Previously reported evidence showed no

statistically significant difference in outcomes based on early angiography or no early

angiography. These results are presented in more detail in the online CoSTR.¹¹⁶

Adverse Events

New meta-analyses were performed that included the 1 additional RCT identified since the last review.¹¹⁴ No significant differences were seen in any of the reported adverse outcomes, including ischemic stroke, intracranial bleeds, recurrent cardiac arrest, cardiac arrhythmias, pneumonia, acute pulmonary edema, bleeding, and acute kidney failure. Additional details, including meta-analysis results, are included in the online CoSTR.¹¹⁶

Treatment Recommendations

When coronary angiography is considered for comatose post-arrest patients without ST elevation, we suggest that either an early or a delayed approach for angiography is reasonable (weak recommendation, low-certainty evidence).

We suggest early coronary angiography in comatose post–cardiac arrest patients with STsegment elevation (good practice statement).

Justification and Evidence-to-Decision Framework

The complete evidence-to-decision table is provided in Appendix A.

This updated review used the search strategy from the 2021 CoSTR,⁸⁷ restricting the inclusion criteria to RCTs only. We found 1 new RCT¹¹⁴ and 1 analysis of long-term outcomes from a previously included RCT.¹¹⁵ The new RCT enabled additional meta-analyses for some critical outcomes, but the overall results, and therefore the treatment recommendations, remain unchanged.

Without ST-Segment Elevation

In making the above recommendations, the ALS Task Force weighed the fact that we did not find sufficient evidence to demonstrate improved outcomes with early angiography for post–

cardiac arrest patients without ST-segment elevation regardless of presenting cardiac arrest rhythm (shockable or nonshockable). Patients in cardiogenic shock postarrest were excluded from all studies, and there is unlikely to ever be clinical equipoise to support a randomized trial of delayed intervention in the shock cohort. There may be subgroups of patients without STsegment elevation with high-risk features that would benefit from earlier CAG.

Importantly, this review examined early coronary angiography, compared with a combined control group of late coronary angiography and/or no coronary angiography. It may be that survival and functional survival may not be the right outcomes to measure harm or benefit from an intervention that adjusts the timing of PCI in postarrest patients. We know that most patients admitted to hospital after cardiac arrest do not die from cardiac complications but instead die as a result of neurologic injury. There are no significant differences in adverse event rates with either time interval.

With ST-Segment Elevation

For comatose patients with ST-segment elevation, there is no randomized clinical evidence for the timing of CAG. The task force acknowledges that early CAG, and percutaneous intervention if indicated, is the current standard of care for patients with ST-segment elevation myocardial infarction who did not have a cardiac arrest. We found no compelling evidence to change this approach in patients with ST-segment elevation after cardiac arrest.

Knowledge Gaps

- Lack of a consistent definition for comparable time intervals to treatment for early compared with late angiography and PCI
- Whether early CAG improves survival/survival with favorable neurologic outcome for postarrest patients with ST-segment elevation

- Whether angiography, compared with no angiography, improves outcomes in postarrest patients
- Whether angiography and PCI may improve outcomes in the no ST-segment elevation cohort who present in shock
- Whether CAG changes outcomes after IHCA
- Evidence for longer term outcomes is limited
- Relatively few studies examining health related quality of life outcomes
- Whether newer or alternative endpoints such as functional or biochemical measures may show a benefit with timing of CAG in cardiac arrest patients

Topics Reviewed by EvUps

The topics reviewed by EvUps are summarized in Table 14, with the PICO number, existing treatment recommendation, number of relevant studies identified, key findings, and whether a SysRev was deemed worthwhile. Complete EvUps can be found in Appendix C.

Topic/PICO	Year last updated	Existing treatment recommendation	RCTs since last review, n	Observational studies since last review, n	Key findings	Sufficient data to warrant SysRev?
Vasopressors	2019	We recommend	0 (2	10	Studies	No
during cardiac	CoSTR	administration of	substudies		support the	
arrest (ALS 659)		epinephrine during	of a prior		effect of	
		cardiopulmonary	RCT		survival but	
		resuscitation (strong	identified)		uncertain	
		recommendation, low-			effect on	
		to moderate-certainty			functional	
		evidence).			outcome.	
					Observation	
		For nonshockable			al studies	
		rhythms			continue to	
		(PEA/asystole), we			be limited	
		recommend			by	
		administration of			resuscitation	
		epinephrine as soon as			time bias.	

Table	14.	Topics	Reviewed	bv	EvUns
Lanc	T.4.	Topics	Ite vie weu	DJ.	Liops

Topic/PICO	Year last updated	Existing treatment recommendation	RCTs since last review, n	Observational studies since last review, n	Key findings	Sufficient data to warrant SysRev?
		feasible during cardiopulmonary resuscitation (strong recommendation, very low–certainty evidence).			4	~) ~ ~ ~ ~ ~ ~
		For shockable rhythms (VF/pVT), we suggest administration of epinephrine after initial defibrillation attempts are unsuccessful during cardiopulmonary resuscitation (weak recommendation, very low-certainty			8	
		evidence). We suggest against the administration of vasopressin in place of epinephrine during cardiopulmonary resuscitation (weak recommendation, very low-certainty evidence).				
8		We suggest against the addition of vasopressin to epinephrine during cardiopulmonary resuscitation (weak recommendation, low- certainty evidence).				
Cardiac arrest from PE (ALS 581)	2020 CoSTR	We suggest administering fibrinolytic drugs for cardiac arrest when PE is the suspected cause of cardiac arrest (weak recommendation, very low–certainty evidence).	0	4	Small studies that do not change management ; there is a need for an EvUp focusing on	No

Topic/PICO	Year last updated	Existing treatment recommendation	RCTs since last review, n	Observational studies since last review, n	Key findings	Sufficient data to warrant SysRev?
		We suggest the use of			ECPR for	
		fibrinolytic drugs or			cardiac	
		surgical embolectomy			arrest from	
		or percutaneous			PE.	
		mechanical thrombectomy for				
		cardiac arrest when PE				
		is the known cause of				
		cardiac arrest (weak				
		recommendation, very				
		low certainty of				
		evidence).				
		The role of				
		extracorporeal life				
		support (ECPR)				
		techniques has been				
		addressed in the 2019				
		ILCOR CoSTR.				
		We suggest that ECPR				
		may be considered as a rescue therapy for				
		selected patients with				
		cardiac arrest when				
		conventional CPR is				
		failing in settings in				
		which it can be				
		implemented (weak				
		recommendation, very				
		low-certainty evidence).				

CoSTR indicates International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations; CPR, cardiopulmonary resuscitation; ECPR, extracorporeal cardiopulmonary resuscitation; EvUp, evidence update; ILCOR, International Liaison Committee on Resuscitation; PE, pulmonary embolism; PEA, pulseless electrical activity; PICO, population, intervention, comparator, outcome; pVT, pulseless ventricular tachycardia; RCT, randomized controlled trial; SysRev, systematic review; and VF, ventricular fibrillation.

PEDIATRIC LIFE SUPPORT

Public-Access Devices (SysRev)

Rationale for Review

This topic was chosen because of growing literature on the inclusion of children in public-access defibrillation programs, the increasing use of AEDs for children generally, and the wider availability of AEDs in the community. The review was conducted on behalf of both the PLS and BLS Task Forces (PROSPERO Registration CRD42017080475), and the full text of this CoSTR is available on the ILCOR website.¹¹⁹

Population, Intervention, Comparator, Outcome, Study Design, and Time Frame

- **Population:** Infants, children, and adolescents with nontraumatic out-of-hospital cardiac arrest
- Intervention: Application of, or shock delivery from, an AED by lay rescuers
- **Comparator:** Standard care by lay rescuer without AED application
- Outcome:
 - Critical: survival and functional outcome at hospital discharge
 - Important: ROSC. Other outcomes as available
- **Study design:** RCTs and nonrandomized studies (non-RCTs, interrupted time series, controlled before-and-after studies, cohort studies) were eligible for inclusion. Unpublished studies (eg, conference abstracts, trial protocols) were excluded.
- **Time frame:** All years and all languages were included if there was an English abstract. The initial search was done on January 25, 2021, and updated on November 3, 2021.

Consensus on Science

The search identified 1163 unique articles, and 4 observational studies were included. Three papers¹²⁰⁻¹²² were from the Cardiac Arrest Registry to Enhance Survival (CARES) database in the United States. The data reported did not correspond to the PICOST question in a usable manner, although AED use was part of the analyses. Raw data provided by the CARES registry included the number of children who had a cardiac arrest, age groups of those children, the number who had an AED applied, and the outcomes at hospital discharge. From those numbers, the relative risk of survival if an AED was applied was calculated. Because there were several studies from the Japanese Fire and Disaster Management Agency with overlapping dates for data inclusion, the last article¹²³ (the most time-inclusive) was chosen to avoid duplication of data.

Given the age-dependent risk of a shockable rhythm and age-dependent chance of survival, we analyzed the data in 3 age groups: less than 1 year of age, 1 to 12 years of age, and 13 to 18 years of age. The overall certainty of evidence was rated as very low for all outcomes, and the risk of bias was too high to enable meta-analysis. Table 15 summarizes the relative risks for the critical outcomes of Cerebral Performance Category (CPC) 1 to 2 at 1 month, CPC 1 to 2 at hospital discharge, and hospital discharge and bystander CPR with AED.

Table 15. Summary of Outcomes for Children for Whom an AED Was Applied, Compared
With Those With No AED Applied, by Age Group

Age, years	Hospital discharge RR (95% CI)	CPC 1 to 2 at hospital discharge RR (95% CI)	CPC 1 to 2 at 1 month RR (95% CI)
<1120-122	1.43 (0.22–9.37)	1.82 (0.28–11.96)	
$1 - 12^{120 - 122}$	3.04 (2.18-4.25)	3.85 (2.69–5.5)	
13-18 ¹²⁰⁻¹²²	3.38 (2.74–4.16)	3.75 (2.97-4.72)	
0–17 years ¹²¹	1.55 (1.12–2.12)	1.49 (1.11–1.97)	
6–17 years ¹²³			12.12 (4.97–17.12)

AED indicates automatic external defibrillator; CPC, Cerebral Performance Category; CPR, cardiopulmonary resuscitation; and RR, relative risk.

Treatment Recommendations

We suggest the use of an AED by lay rescuers for all children over age 1 year who have non-traumatic out-of-hospital cardiac arrest (weak recommendation, very low-certainty evidence).

We cannot make a recommendation for or against the use of an AED by lay rescuers for all children below age 1 year suffering non-traumatic out-of-hospital cardiac arrest.

Justification and Evidence-to-Decision Framework Highlights

The complete evidence-to-decision table is provided in Appendix A.

For Children More Than 1 Year of Age

In making these recommendations, the PLS Task Force considered that in all of the included studies, only a small percentage of children had an AED applied or shock delivered. The evidence showed that 120 out of 7591 children from the CARES database had an AED applied and 220 out of 5899 children in the Japanese study had a shock delivered.¹²⁰⁻¹²³ In making a weak recommendation, we considered the high relative risk and the relatively low number needed to treat for improved hospital discharge and favorable neurologic outcomes at hospital discharge or 30 days but recognized that relatively few patients had an AED applied. There may be significant selection bias in those children who had the AED applied. The rescuers who applied the AED may be those who had a greater skillset and, thus, provided higher-quality CPR. In addition to treating shockable rhythms, AEDs provide instructions about CPR, which may help lay rescuers to perform CPR even if a shock is not required and dispatch instructions are not available.

The task force did not evaluate outcomes with chest compressions only versus chest compressions with rescue breaths because of the few children who had AEDs applied. There was substantial discussion about the potential for harm in applying an AED by delaying CPR and increasing the number and duration of pauses. In making a final recommendation, we acknowledged that the data were from nonselected rescuers and those events likely occurred, but the relative risks were still significantly in favor of AED application.

For Children Less Than 1 Year of Age

The task force had a robust discussion about this treatment recommendation. In making no recommendation about the use of AEDs in children less than 1 year of age, the task force considered the lack of a significant difference in outcomes. However, few patients in this age group had an AED applied (12), and only 1 survived. This may have resulted in a type II error and, thus, the task force did not make any recommendation. The task force recognized that there is a small population of infants who do have shockable rhythms, mainly those with inherited arrhythmia syndromes or hypoxemia. These infants could benefit from AED application. In the absence of dispatch CPR instructions, AEDs assist lay rescuers by providing CPR instructions, which could increase survival in infants without shockable rhythms.

Knowledge Gaps

- Absence of RCTs of AED use in children
- The interaction between high-quality CPR and the effect of AED application. This is particularly important in light of the importance of rescue breaths with chest compressions in pediatric cardiac arrest.

- Whether AED application alters outcomes on the basis of the type of CPR provided, ie, potential delay in initiating chest compressions, chest compression–only CPR, or conventional CPR with compressions and rescue breathing
- Whether AED application affects survival/functional survival beyond 30 days
- Whether there are possible advantages to using the pediatric modifications for younger children, especially those less than 8 years of age or who weigh less than 25 kg
- Whether the application of an AED is beneficial beyond shock delivery, such as by directing the rescuer to the appropriate actions. The mechanisms of potential human factors and behavioral change are not understood.

Pediatric Early Warning Systems (PEWS) With or Without Rapid Response Teams (SysRev)

Rationale for Review

This SysRev was prompted by our scoping review of Pediatric Early Warning Scores conducted in 2020,¹²⁴ and was undertaken to review our current treatment recommendations for Pediatric Early Warning Systems (PEWS) (PROSPERO Registration CRD42021269579). PEWS encompass both the use of an early warning score and a protocolized response to that score. The full text of this CoSTR can be found on the ILCOR website.¹²⁵

Population, Intervention, Comparator, Outcome, Study Design, and Time Frame

- **Population:** Infants, children, and adolescents in any inpatient setting
- Intervention: PEWS with or without rapid response teams or medical emergency teams
- **Comparator:** No PEWS or standard care (without a scoring system)
- Outcome:

- Critical: significant clinical deterioration event, including but not limited to (1)
 unplanned/crash tracheal intubation, (2) unanticipated fluid resuscitation and
 inotropic/vasopressor use, (3) CPR or extracorporeal membrane oxygenation, and (4)
 death in patients (all-cause mortality) without a do not attempt resuscitate order:
- Important: unplanned code events
- **Study design:** RCTs and nonrandomized studies (non-RCTs, interrupted time series, controlled before-and-after studies, cohort studies) were eligible for inclusion. Unpublished studies (eg, conference abstracts, trial protocols) were excluded.
- **Time frame:** All years and all languages were included if there was an English abstract. Literature search was updated to June 26, 2021.

Consensus on Science

We identified 12 studies with 1 RCT¹²⁶ and 11 cohort studies¹²⁷⁻¹³⁷ for inclusion in our SysRev (Table 16). The overall certainty of evidence was rated as very low (downgraded for very serious risk of bias and very serious imprecision) for all outcomes. Results are summarized in Table 16.

Outcomes	Number/type of studies	RR (95% CI)	Comments
Mortality	1 RCT ¹²⁶	1.24 (0.95–1.62)	There was no significant
(critical)	9 cohort studies ¹²⁷⁻¹³⁵	Pooled RR 1.17	difference in mortality with no
		(0.98 - 1.40)	PEWS compared with PEWS.
			Pooled analysis demonstrated a
			trend for increased mortality when
			no PEWS was used compared
			with PEWS.
Cardiopulmonary	6 cohort studies ¹²⁸⁻	Pooled IRR/RR,	There was a trend for increased
arrest events	131,135,136	1.22 (0.93–1.59)	cardiopulmonary arrest events
(critical)			with no PEWS compared with
			PEWS, but this was not
			statistically significant.
	1 RCT ¹²⁶	1.67 (1.34-2.08)	

Table 16. Summary of the Effect of Use of PEWS Compared With No PEWS on Patient Outcomes

Outcomes	Number/type of studies	RR (95% CI)	Comments
Significant	5 cohort	Pooled RR, 1.09	Pooled analysis of all studies
deterioration events	studies ^{127,128,132,133,137}	(0.84 - 1.42)	demonstrated a non-statistically
(critical)			significant trend of increased
			significant clinical deterioration
			events with no PEWS compared
			with PEWS; limited by
			heterogeneity.
Unplanned code	4 cohort	Pooled IRR/RR,	There was a statistically
events	studies ^{129,131,132,134}	1.73 (1.01–2.96)	significant increase in unplanned
(important)			code events when no PEWS was
			compared with PEWS.

IRR indicates incidence rate ratio; PEWS, pediatric early warning systems; RCT, randomized controlled trial; and RR, relative risk.

Treatment Recommendations

We suggest using pediatric early warning systems to monitor hospitalized children, with the aim of identifying those who may be deteriorating (weak recommendation, low-certainty evidence).

Justification and Evidence-to-Decision Framework Highlights

The full evidence-to-decision table is provided in Appendix A.

In making these recommendations, the PLS Task Force considered the following:

PEWS should be part of an overall clinical response system, with the task force placing a higher value on improving healthcare providers' ability to recognize and intervene for patients with deteriorating illness over the expense incurred by a healthcare system committing significant resources to implement these systems. The task force also noted that the complex process of optimizing patient care is likely to include both the implementation of PEWS and ongoing education for healthcare providers. The PLS Task Force agreed that the decision to use PEWS should be balanced between use of existing resources and capabilities of the healthcare setting to adapt to its use and the consequences of its use.

In the limited available evidence, there is equipoise about whether the use of PEWS significantly decreases in-hospital pediatric mortality, significant clinical deterioration, and cardiopulmonary arrest events. However, in systems with available resources that prioritize and value the potential to decrease the incidence of code events for inpatient pediatric patients, there was very weak evidence to support the use of PEWS in this context.

The task force recognized the significant limitations of the available evidence in its treatment recommendations but also the importance and the potential value of improving healthcare providers' ability to recognize and intervene for patients with deteriorating illness. For settings already using PEWS, local validation, site-specific adaptation of its use, and longitudinal evaluation of its effectiveness are important.

Task Force Knowledge Gaps

- Whether PEWS decrease pediatric cardiopulmonary arrest or improve mortality
- The relative contribution of PEWS and other practice changes aimed at quality improvement (including educational processes, documentation review with feedback systems, and modification of other factors thought to improve the delivery of care) to changes in patient outcomes. Controlled trials and quality improvement methodology is suggested for further studies.
- The effect of rapid response teams, alone and in combination with PEWS
- Whether the effect of PEWS and/or rapid response teams varies by setting and patient type (eg, emergency department, pediatric oncology patients, patients in higher- vs lower-resource settings)

- Prospective evaluations of different PEWS for predicting, identifying, and providing early intervention for patients at risk for different forms of decompensation, including primary respiratory, circulatory, and neurologic etiologies
- Effectiveness of various methods for PEWS implementation and staff training; data on feasibility, cost-effectiveness, equity, and acceptability of integrating PEWS into existing healthcare systems

Topics Reviewed by Evidence Updates

The topics reviewed by EvUps are summarized in Table 17, with the PICO number, existing treatment recommendation, number of relevant studies identified, key findings, and whether a SysRev was deemed worthwhile. Complete EvUps can be found in Appendix C.

Topic/PICO	Year last updated	Existing treatment recommendation	RCTs since last review	Observational studies since last review	Key findings	Sufficient data to warrant SysRev?
Sequence of	2020 CoSTR	The confidence in	0	0	No new	No
chest		effect estimates is so			studies were	
compressions		low that the panel			identified.	
and		decided a				
ventilations: C-		recommendation was				
A-B versus A-		too speculative.				
B-C (Peds 709)						
Chest	2020 EvUp	We recommend that	0	1	One published	No
compression-		rescuers provide			study supports	
only CPR	2017 CoSTR	rescue breaths and			our current	
versus		chest compressions			recommendati	
conventional		for pediatric IHCA			ons.	
CPR (Peds		and OHCA. If				
414)		rescuers cannot				
		provide rescue				
		breaths, they should				
		at least perform				
		chest compressions				
		(strong				
		recommendation,				
		low-quality				
		evidence).				
Drugs for the	2020 EvUp	Epinephrine may be	0	3	Three papers	No
treatment of		administered to			were	
bradycardia	2010 CoSTR	infants and children			identified: 2	
(PLS NEW)		with bradycardia and			showed an	

Table 17. Summary of PLS EvUps

Topic/PICO	Year last updated	Existing treatment recommendation	RCTs since last review	Observational studies since last review	Key findings	Sufficient data to warrant SysRev?
		poor perfusion that is unresponsive to ventilation and oxygenation. It is reasonable to administer atropine for bradycardia caused by increased vagal tone or anticholinergic drug toxicity. There is insufficient evidence to support or refute the routine use of atropine for pediatric cardiac arrest.			association between epinephrine use and worse outcome while 1 showed no difference, although epinephrine use was not the objective for this study. The current evidence is not enough to change the current recommendati ons and, thus, should not prompt a	
Emergency transcutaneous pacing for bradycardia (PLS NEW)	2020 EvUp 2020 CoSTR	In selected cases of bradycardia caused by complete heart block or abnormal function of the sinus node, emergency transthoracic pacing may be lifesaving. Pacing is not helpful in children with bradycardia secondary to a postarrest hypoxic/ischemic myocardial insult or respiratory failure. Pacing was not shown to be effective in the treatment of asystole in children.	0	0	review. No new studies were identified.	No
Extracorporeal CPR for pediatric cardiac arrest (Peds 407)	2019 CoSTR	We suggest that ECPR may be considered as an intervention for selected infants and children (eg, cardiac populations) with IHCA refractory to conventional CPR in settings where	0	15	Fifteen studies were identified and, collectively, their findings did not provide sufficient evidence to change the	No

Topic/PICO	Year last updated	Existing treatment recommendation	RCTs since last review	Observational studies since last review	Key findings	Sufficient data to warrant SysRev?
Intraosseous versus intravenous route of drug administration (PLS, part of nodal ALS 2046)	2020 CoSTR	resuscitation systems allow ECPR to be well performed and implemented (weak recommendation, very low-certainty evidence). There is insufficient evidence in pediatric OHCA to formulate a treatment recommendation for the use of ECPR. Intraosseous cannulation is an acceptable route of vascular access in infants and children with cardiac arrest. It should be considered early in the care of critically ill children whenever venous	0	2	treatment recommendati ons from 2019. There were 2 nonrandomize d, observational studies. One reported worse outcomes with IO access while the other found no	No
Sodium bicarbonate administration for children in cardiac arrest (PLS 388)	2020 EvUp 2010 CoSTR	Routine administration of sodium bicarbonate is not recommended in the management of pediatric cardiac arrest.	0	0	No new studies were identified. A SysRev and meta-analysis were published, and this included 7	No
8	S				observational studies (2 prospective), published between 2006 and 2018. Results support our current recommendati ons.	
Targeted temperature management*	2019 CoSTR	The PLS Task Force recommendations from 2020 for the pediatric population remain unchanged in 2021, with minor wording clarification of temperature targets:	0	8	No new RCTs were identified. There were 8 additional publications; however, 7 were secondary	No

Topic/PICO	Year last updated	Existing treatment recommendation	RCTs since last review	Observational studies since last review	Key findings	Sufficient data to warrant SysRev?
		We suggest that for infants and children			analyses of subgroups of	
		who remain			the THAPCA	
		comatose following			RCT primary	
		ROSC from OHCA			trial data for	
		or IHCA, active			the OHCA,	
		control of			IHCA, or	
		temperature be used			combined 🧹	
		to maintain a central			cohorts.	
		temperature ≤37.5°C				
		(weak				
		recommendation,				
		moderate-certainty				
		evidence). There is				
		inconclusive				
		evidence to support or refute the use of				
		induced hypothermia				
		$(32^{\circ}C \text{ to } 34^{\circ}C)$				
		compared with				
		active control of				
		temperature at				
		normothermia (36°C				
		to 37.5°C) (or an				
		alternative				
		temperature) for				
		children who achieve				
		ROSC but remain				
		comatose after				
A. D. C. indiantan		OHCA or IHCA.		:		

A-B-C indicates airway-breaths-compressions; C-A-B, compressions-airway-breaths; CoSTR, International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations; CPR, cardiopulmonary resuscitation; ECPR, extracorporeal cardiopulmonary resuscitation; EvUp, evidence update; IHCA, in-hospital cardiac arrest; IO, intraosseous; OHCA, out-of-hospital cardiac arrest; PICO, population, intervention, comparator, outcome; PLS, pediatric life support; RCT, randomized controlled trial; ROSC, return of spontaneous circulation; SysRev, systematic review; THAPCA, Therapeutic Hypothermia After Pediatric Cardiac Arrest; and TTM, targeted temperature management.

*The International Liaison Committee on Resuscitation PLS Task Force issued "Post-Arrest Temperature Management in Children: Statement on Post Cardiac Arrest Temperature Management in Children" in November 2021,¹³⁸ following the CoSTR "Temperature Management in Adult Cardiac Arrest: Advanced Life Support Systematic Review" by the Advanced Life Support Task Force.⁵⁸

NEONATAL LIFE SUPPORT

Maintaining Normal Temperature Immediately After Birth in Late Preterm and Term Infants (SysRev)

Rationale for Review

A previous SysRev conducted for ILCOR concluded that there was a dose-responsive association between hypothermia on admission to a neonatal unit or postnatal ward and increased risk of mortality and other adverse outcomes.¹³⁹ A systematic review estimated that hypothermia was common in infants born in hospitals (prevalence range, 32% to 85%) and homes (prevalence range, 11% to 92%), even in tropical environments.¹⁴⁰ A SysRev was initiated from a priority list from the ILCOR Neonatal Life Support (NLS) Task Force (PROSPERO; registration CRD42021270739).[Liley, 2022 ####] The full text of this review can be found on the ILCOR website.¹⁴¹

Population, Intervention, Comparator, Outcome, Study Design, and Time Frame

- **Population:** Late preterm and term newborn infants (\geq 34 weeks' gestation)
- Intervention: Increased room temperature 23.0°C or warmer, thermal mattress, plastic bag or wrap, hat, heating and humidification of gases used for resuscitation, radiant warmer (with or without servo control), early monitoring of temperature, warm bags of fluid, warmed swaddling/clothing, skin-to-skin care with a parent, or any combination of these interventions
- **Comparator:** Drying, without any of the above interventions, and comparisons between interventions
- Outcome:
 - Critical: Survival

Important: Rate of normothermia on admission to neonatal unit or postnatal ward; rate of hypothermia and hyperthermia on admission to neonatal unit or postnatal ward; response to resuscitation (eg, need for assisted ventilation, highest FIO₂). For this and all subsequent reviews, importance of outcomes was in accord with Strand et al¹⁴² or by consensus of the task force for outcomes specific to each review. Additional outcomes are included in the full online CoSTR.¹⁴¹ For the purposes of the review, the definitions in in Table 18 were used.¹⁴³

Term	Body temperature	
Moderate hypothermia	32.0°C–35.9°C	Measured using a digital,
		mercury, or contactless
Cold stress	36°C to 36.4°C	thermometer (axillary, rectal, or
Hyperthermia	>37.5°C	other defined site), on admission
		to a postnatal ward or neonatal
		unit; or if admission temperature
		not reported, temperature
		measured between 30 and 60 min
		of age.

Table 18. Temperature Terminology

- **Study design:** RCTs and nonrandomized studies (non-RCTs, interrupted time series, controlled before-and-after studies, cohort studies) were eligible for inclusion. Unpublished studies were excluded.
- **Time frame:** All years and all languages were included if there was an English abstract. The literature search was conducted to August 2, 2021.

Consensus on Science

The SysRev identified 35 studies (25 RCTs including 4625 participants¹⁴⁴⁻¹⁶⁸ and 10 observational studies¹⁶⁹⁻¹⁷⁸ including >3342 participants [number not reported in 1 study]). All RCTs had eligibility criteria that excluded some or all infants who were at high risk of needing resuscitation or who received resuscitation. The studies were conducted in high-, middle-, and

low-income countries, but few interventions were studied in all settings. None of the studies included out-of-hospital births. Temperature outcomes were reported in a wide variety of ways, constraining the meta-analysis. There were insufficient data to conduct any of the prespecified subgroup analyses.

Comparison 1: Increased Room Temperature Compared With No Increased Room

Temperature for Late Preterm and Term Newborn Infants

The SysRev identified 1 cluster-RCT including 825 late preterm and term newborn infants for this comparison.¹⁵¹ All were born by caesarean section, so the study pertains specifically to operating room temperatures and only temperatures of 20°C and 23°C were compared. Data relating to the key critical and important outcomes for this comparison are summarized in Table 19. Evidence for additional outcomes evaluated is included in the full online CoSTR.¹⁴¹

		Containty of		Anticipated absolute effects (n)			
Outcomes (importance)	Participants (studies), n			Risk with room temperature	RD with room temperature 23°C		
(importance)	(stuties), ii	(GRADE)		20°C	temperature 25 C		
Normothermia on	825 (1 RCT)	Very low	1.26 (1.11–	449 per 1000	130 more infants		
admission	Duryea et al, ¹⁵¹		1.42)		per 1000 (55		
(important)	2016				more-209 more)		
					were		
					normothermic		
					when 23°C was		
					used		
Temperature on	825 (1 RCT)	Very low	Not applicable	Mean	MD 0.3°C higher		
admission	Duryea et al, ¹⁵¹			temperature	(0.23°C higher-		
(important)	2016			36.4°C	0.37°C higher)		
					when 23°C was		
					used		
Moderate	825 (1 RCT)	Very low	0.26 (0.16–	189 per 1000	140 fewer infants		
hypothermia	Duryea et al, ¹⁵¹	-	0.42)	_	per 1000 (158		
(<36 ⁰ C)	2016				fewer–109 fewer)		
(important)					were moderately		

 Table 19. Increased Room Temperature Compared With No Increased Room Temperature

 for Late Preterm and Term Newborn Infants

	Containts		w of	Anticipated absolute effects (n)		
Outcomes	Participants	Certainty of the evidence	RR (95% CI)	Risk with room	RD with room	
(importance)	(studies), n	(GRADE)		temperature	temperature 23°C	
		(GREEDE)		20°C		
					hypothermic when	
					23°C was used	
Hyperthermia	825 (1 RCT)	Very low	4.13 (0.88–	5 per 1000	15 more infants	
(>37.5°C)	Duryea et al, ¹⁵¹		19.32)		per 1000 (1 fewer-	
(important)	2016				87 more) were	
					hyperthermic	
					when 23°C was	
					used	

GRADE indicates Grading of Recommendations Assessment, Development, and Evaluation; MD, mean difference; RCT, randomized controlled trial; RD, risk difference; and RR, risk ratio.

Comparison 2. Skin-to-Skin Care With a Parent Versus No Skin-to-Skin Care for Late

Preterm and Term Infants

The SysRev found 10 RCTs including 1668 late preterm and term newborn infants for

this comparison.^{147,149,153-156,159,162,163,165}

Data relating to key critical and important outcomes are shown in Table 20. Evidence for

additional outcomes evaluated is included in the full online CoSTR.¹⁴¹

Table 20. Skin-to-Skin Care With a Parent Versus No Skin-to-Skin Care in Late Preto	erm
and Term Newborn Infants	

_		Certainty		Anticipated absolute effects (n)		
Outcomes (importance)	Participants (studies), n	of the evidence (GRADE)	RR (95% CI)	Risk with no skin-to-skin care	RD with skin- to-skin care	
Survival to hospital	203 (1 RCT)	Very low	Insufficient			
discharge	Ramani et al, ¹⁶²		events to			
(critical)	2018		determine the			
			rate			
Normothermia on	551 (3 RCTs)	Very low	1.39 (0.91–	614 per 1000	239 more	
admission	Ramani et al, ¹⁶²		2.12)		infants per 1000	
(important)	2018				(55 fewer-688	
	Safari et al, ¹⁶³				more) were	
	2018				normothermic	
	Srivastava et al, ¹⁶⁵				when skin-to-	
	2014				skin care was	
					used	
Temperature on	1048 (8 RCTs)	Very low	Not applicable	Mean	MD 0.32°C	
admission	Carfoot et al, ¹⁴⁷			temperature	higher (0.1°C	
(important)	2005			36.5°C	higher-0.54°C	

		Certainty		Anticipated ab	solute effects (n)
Outcomes (importance)	Participants (studies), n	of the evidence (GRADE)	RR (95% CI)	Risk with no skin-to-skin care	RD with skin- to-skin care
	Christensson et al, ¹⁴⁹ 1992 Huang et al, ¹⁵³ 2019 KoÇ et al, ¹⁵⁵ 2017 Kollman et al, ¹⁵⁶ 2017 Ramani et al, ¹⁶² 2018 Safari et al, ¹⁶³ 2018 Srivastava et al, ¹⁶⁵ 2014				higher) when skin-to-skin care was used
Hypoglycemia (Important)	100 (1 RCT) KoÇ et al, ¹⁵⁵ 2017	Very low	0.16 (0.05–0.53)	326 per 1000	273 fewer infants per 1000 (309 fewer–153 fewer) were hypoglycemic when skin-to- skin care was used
Admission to NICU (Important)	512 (3 RCTs) Kollman et al, ¹⁵⁶ 2017 Marín Gabriel et al, ¹⁵⁹ 2010 Ramani et al, ¹⁶² 2018	Very low	0.34 (0.14– 0.83)	70 per 1000	46 fewer infants per 1000 (60 fewer–12 fewer) were admitted to the NICU when skin-to- skin care was used

GRADE indicates Grading of Recommendations Assessment, Development, and Evaluation; MD, mean difference; NICU, neonatal intensive care unit; RCT, randomized controlled trial; RD, risk difference; and RR, risk ratio.

Comparison 3. Plastic Bag or Wrap Compared With No Plastic Bag or Wrap for Late Preterm and Term Newborn Infants

The SysRev found 3 RCTs including 794 late preterm and term newborn infants for this comparison.^{146,154,158,164} Data relating to key critical and important outcomes are shown in Table 21. Evidence for additional outcomes evaluated is included in the full online CoSTR.¹⁴¹ Of note

this comparison included studies where infants had been dried or not dried prior to use of the

plastic bag or wrap.

		Certainty of		Anticipated a	bsolute effects (n)
Outcomes (importance)	Participants (studies), n	rticipants the evidence RR (95% CI)		Risk with standard care	RD with plastic bag or wrap plus standard care
Survival to hospital discharge (critical)	305 (2 RCTs) Leadford et al, ¹⁵⁸ 2013 Shabeer et al, ¹⁶⁴ 2018	Very low	0.95 (0.60– 1.51)	981 per 1000	49 fewer infants per 1000 (392 fewer–500 more) died when a plastic bag or wrap was used
Normothermia on admission (important)	305 (2 RCTs) Leadford et al, ¹⁵⁸ 2013 Shabeer et al, ¹⁶⁴ 2018	Very low	1.50 (1.20– 1.89)	406 per 1000	203 more infants per 1000 (81 more–3629 more) were normothermic when a plastic bag or wrap was used
Temperature on admission (important)	425 (3 RCTs) Cardona- Torres et al, ¹⁴⁶ 2012 Leadford et al, ¹⁵⁸ 2013 Shabeer et al, ¹⁶⁴ 2018	Very low	Not applicable	Mean temperature 36.3°C	MD 0.29°C higher (0.2°C higher– 0.37°C higher) when a plastic bag or wrap was used

Table 21. Plastic Bag or Wrap	Compared W	ith No Plastic	Bag or	Wrap for Late Preterm
and Term Newborn Infants				

GRADE indicates Grading of Recommendations Assessment, Development, and Evaluation; MD; mean difference; RCT, randomized controlled trial; RD, risk difference; and RR, risk ratio.

Comparison 4. Plastic Bag or Wrap Combined With Skin-To-Skin Care Compared With Skin-

To-Skin Care Alone for Late Preterm and Term Newborn Infants

The SysRev found 2 RCTs including 698 late preterm and term newborn infants for this

comparison.^{145,167} Data relating to key critical and important outcomes are shown in Table 22.

Evidence for additional outcomes evaluated is included in the full online CoSTR.¹⁴¹ This

comparison included studies where infants had been dried or not dried prior to use of the plastic

bag or wrap.

Table 22. Plastic Bag or Wrap Combined With Skin-to-Skin Care Compared With Skin-to-
Skin Care Alone for Late Preterm and Term Newborn Infants

		Certainty of		Anticipated absolute effects (n)		
Outcomes (importance)	Participants (studies), n	the evidence (GRADE)	RR (95% CI)	Risk with skin- to-skin care alone	RD with plastic bag or wrap plus skin-to-skin care	
Survival to hospital discharge (critical)	271 (1 RCT) Belsches et al, ¹⁴⁵ 2013	Low	All infants in both groups survived		T	
Normothermia on admission (important)	692 (2 RCTs) Belsches et al, ¹⁴⁵ 2013 Travers et al, ¹⁶⁷ 2021	Low	1.39 (1.08– 1.79)	221 per 1000	86 more infants per 1000 more (18 more–174 more per 1000) were normothermic when a plastic bag or wrap was added	
Temperature on admission (important)	692 (2 RCTs) Belsches et al, 2013 ¹⁴⁵ Travers et al, 2021 ¹⁶⁷	Low	Not applicable	Mean body temperature 36.0°C	MD 0.2°C higher (0.1°C higher– 0.3°C higher) when a plastic bag or wrap was added	
Admission to NICU or special care unit (important)	275 (1 RCT) Belsches et al, ¹⁴⁵ 2013	Low	0.26 (0.03– 2.26)	29 per 1000	21 fewer infants per 1000 (28 fewer–36 more per 1000) were admitted to a NICU or special care unit when a plastic bag or wrap was added	
Hyperthermia (>37.5°C) (important)	692 (2 RCTs) Belsches et al, ¹⁴⁵ 2013 Travers et al, ¹⁶⁷ 2021	Very low	1.02 (0.08– 12.85)	3 per 1000	0 more infants per 1000 (3 fewer–34 more per 1000) were hyperthermic when a plastic bag or wrap was added	

GRADE indicates Grading of Recommendations Assessment, Development, and Evaluation; MD, mean difference; NICU, neonatal intensive care unit; RCT, randomized controlled trial; RD, risk difference; and RR, risk ratio.

For all other comparisons, no evidence-to-decision tables were developed, either because only single studies providing very low–certainty evidence were available or because no studies were found. Additional details on these comparisons are included in the online CoSTR.¹⁴¹

Treatment Recommendations

In late preterm and term newborn infants (\geq 34 weeks' gestation), we suggest the use of room temperatures of 23°C compared to 20°C at birth in order to maintain normal temperature (weak recommendation, very low–certainty evidence).

In late preterm and term newborn infants (\geq 34 weeks' gestation) at low risk of needing resuscitation, we suggest the use of skin-to-skin care with a parent immediately after birth rather than no skin-to-skin care to maintain normal temperature (weak recommendation, very low–certainty evidence).

In some situations where skin-to-skin care is not possible, it is reasonable to consider the use of a plastic bag or wrap, among other measures, to maintain normal temperature (weak recommendation, very low–certainty evidence).

In late preterm and term newborn infants \geq 34 weeks' gestation, for routine use of a plastic bag or wrap in addition to skin-to-skin care immediately after birth compared with skin-to-skin care alone, the balance of desirable and undesirable effects was uncertain. Furthermore, the values, preferences, and cost implications of the routine use of a plastic bag or wrap in addition to skin-to-skin care are not known and, therefore, no treatment recommendation can be formulated.

Justification and Evidence-to-Decision Framework Highlights

The complete evidence-to-decision tables are provided in Appendix A.

In making these recommendations, the NLS Task Force considered that the review found evidence to support each of 3 interventions, without evidence of adverse effects. Each of these interventions was thought likely to be low in cost and feasible in many settings.

In many facilities, immediate newborn infant care (including resuscitation if needed) takes place in the delivery or operating room, and it may not be practicable to alter room temperatures for very preterm births and not others. Where a designated resuscitation room with separate temperature control is used, more individualised ambient temperature control may be feasible. Higher (>23°C) ambient temperatures have not been studied for late preterm and term infants. The adverse outcomes of maternal or neonatal hyperthermia could increase at higher ambient temperatures. Mortality may be increased among hyperthermic newborn infants,¹⁷⁹ and hypoxic ischemic encephalopathy may be exacerbated by hyperthermia.¹⁸⁰

For skin-to-skin care, there is insufficient evidence to make a recommendation for newborn infants at high risk of needing resuscitation because of the inclusion criteria of available studies. There is a much larger evidence base supporting the use of skin-to-skin care in preterm and term infants for a variety of maternal and neonatal outcomes.^{181,182} Studies report some barriers to use, but overall, skin-to-skin care is judged to be acceptable by both parents and caregivers.¹⁸³⁻¹⁸⁵ Skin-to-skin care is likely to be cost-effective, acceptable, and feasible in high-, middle-, and low-income countries.

For routine use of a plastic bag or wrap for late preterm and term newborn infants 34 weeks' or greater gestation, the balance of desirable and undesirable effects was considered uncertain because of the potential for unmeasured undesirable effects. These could include that a plastic bag or wrap might be seen as an alternative or impediment to skin-to-skin care. When used in combination with warming devices, there could be risk of hyperthermia. Costs to clinical services could be high if they were used for a high proportion of late preterm and term infants. The environmental impact was also considered. Cultural values and maternal preferences in relation to this specific intervention are not known. Although the NLS Task Force agreed that

skin-to-skin care was preferred, a plastic bag or wrap may be reasonable when skin-to-skin care is not possible, especially for late preterm and low-birth-weight newborn infants, births in which ambient temperatures are low and cannot be increased, when alternative equipment (eg, radiant warmer, incubator, thermal mattress) is not available, or combinations of these circumstances.

The use of skin-to-skin care is likely to improve equity because of the low cost and feasibility for low- or middle-income countries. Room temperatures may or may not be easily adjustable in various settings. Where a room temperature of 23°C cannot be achieved, the importance of skin-to-skin care may be greater.

The overall balance of risks and benefits for the use of a plastic bag or wrap combined with skin-to-skin care was considered uncertain because there was concern plastic bags or wraps might impair the acceptability or safety of skin-to-skin care and, thereby, cause harm. As with the use of a plastic bag or wrap compared with standard care, costs may be a barrier, particularly in low-income countries, if the intervention was applied to a high proportion of births.

Task Force Knowledge Gaps

Additional gaps are included in the full online CoSTR.

- The balance of risks and benefits for each evidence-based intervention when combined with other interventions
- The best methods of maintaining normothermia in infants who received or were at high risk of receiving resuscitation
- The effectiveness of interventions for which no evidence was available or for which evidence was insufficient to make treatment recommendations, including the following:
 - Use of a thermal mattress, which may assume greater importance if a parent is unable to provide skin-to-skin care

- Caps made of various materials
- Use of heated, humidified gases for assisted ventilation
- Early monitoring of temperature versus no early monitoring of temperature
- The role of low- or moderately low-cost interventions such as prewarmed bags of intravenous fluid placed around the newborn infant or prewarmed swaddling and clothing
- The effect of maternal hypothermia or hyperthermia on newborn infants' temperatures
- Standardising the timing and method of recording temperature for all newborn infants would enhance the potential both for benchmarking and for meta-analysis of studies in future reviews.

Suctioning Clear Amniotic Fluid at Birth (SysRev)

Rationale for Review

To support air breathing at birth, oropharyngeal and/or nasopharyngeal suctioning has been a widespread practice for newborn infants. The 2010 CoSTR¹⁸⁶ and many subsequent guidelines have recommended selective use of upper airway suctioning, with use only if the airway appears obstructed or positive pressure ventilation (PPV) is required, and there has been increasing concern that there may be adverse effects of routine upper airway suctioning. A Scoping Review (NLS 596) found sufficient evidence to justify a SysRev.¹⁸⁷ A SysRev was initiated from a priority list from the ILCOR NLS Task Force; PROSPERO registration CRD42021286258.[Fawke, 2022 ####] The full text of this review can be found on the ILCOR website.¹⁸⁸

Population, Intervention, Comparator, Outcome, Study Design, and Time Frame

- **Population:** Newborn infants who are born through clear (not meconium-stained) amniotic fluid
- Intervention: Initial suctioning of the mouth and nose
- Comparator: No initial suctioning
- Outcome:
 - Critical: Advanced resuscitation and stabilization interventions (intubation, chest compressions, epinephrine) in the delivery room
 - Important: Receipt of assisted ventilation; receipt and duration of oxygen supplementation; adverse effects of intervention (eg, apnea, bradycardia, injury, infection, low Apgar scores, dysrhythmia); unanticipated admission to the neonatal intensive care unit (NICU)¹⁴²
- Study Design: RCTs and non-randomized studies (non-RCTs, interrupted time series, controlled before-and-after studies, and cohort studies) were eligible for inclusion.
 Unpublished studies, case series, and animal studies were excluded.
- **Time frame:** All years and all languages were included if an English abstract was available. Literature search was performed on September 21, 2021.

Consensus on Science

The SysRev identified 11 studies (9 RCTs including 1138 participants¹⁸⁹⁻¹⁹⁷ and 2 observational studies^{198,199}) for inclusion. The studies predominantly enrolled healthy, low-risk term newborn infants. For 2 of the RCTs^{192,193} enrolling 280 participants, the task force had concerns about the reliability of the oxygen saturation and heart rate data. Therefore, results of

these studies have been excluded from the meta-analysis. In sensitivity analysis, exclusion of

these studies did not change the overall outcome.

Data relating to the key critical and important outcomes for this comparison are summarized in Table 23. Evidence for additional outcomes that were evaluated is included in the full online CoSTR.188 3

Outcomes	Participants	Certainty of the evidence	RR (95%	Anticipated absolute effects (n)		
(importance)	(studies), n	(GRADE)	CI)	Risk with no suctioning	RD with suctioning	
Assisted ventilation (important)	742 (3 RCTs) Bancalari et al, ¹⁸⁹ 2019 Kelleher et al, ¹⁹⁴ 2013 Modarres Nejad et al, ¹⁹⁵ 2014	Very low	0.72 (0.40–1.31)	64 per 1000	18 fewer per 1000 (39 fewer–20 more)	
Advanced resuscitation and stabilization interventions (important)	742 (3 RCTs) Bancalari et al, ¹⁸⁹ 2019 Kelleher et al, ¹⁹⁴ 2013 Modarres Nejad et al, ¹⁹⁵ 2014	Very low	0.72 (0.40– 1.31)	64 per 1000	18 fewer per 1000 (39 fewer–20 more)	
Oxygen saturations at 5 min (important)	280 (3 RCTs) Bancalari et al, ¹⁸⁹ 2019 Modarres Nejad et al, ¹⁹⁵ 2014 Takahashi et al, ¹⁹⁶ 2009	Very low	Not applicable	Mean oxygen saturation 84.2%	MD 0.26% lower (1.77% lower–1.26% higher)	
HR at 5 min (important)	84 (1 RCT) Bancalari et al, ¹⁸⁹ 2019	Very low	Not applicable	Mean HR 162/min without suctioning	MD 1.00/min lower (7.96/min lower– 5.96/min higher)	

Table 23. Suctioning Clear Amniotic Fluid at Birth

GRADE indicates Grading of Recommendations Assessment, Development, and Evaluation; HR, heart rate; MD, mean difference; RCT, randomized controlled trial; RD, risk difference; and RR, risk ratio.

For all predefined subgroup analyses, there were insufficient data available.

Treatment Recommendations

We suggest that suctioning of clear amniotic fluid from the nose and mouth should not be used as a routine step for newborn infants at birth (weak recommendation, very low–certainty evidence).

Airway positioning and suctioning should be considered if airway obstruction is suspected (good practice statement).

Justification and Evidence-to-Decision Framework Highlights

The complete evidence-to-decision table is provided in Appendix A.

The NLS Task Force found no justification to routinely use an intervention such as oral and nasal suctioning in the absence of demonstrated benefit. The participants in the included studies were predominantly healthy, term newborn infants, and there could be potential for unmeasured harm if suctioning caused delay in resuscitation for those who require it.

This systematic review recommendation does not apply to situations where there are concerns regarding airway obstruction.

Task Force Knowledge Gaps

- The role of suctioning of clear amniotic fluid at birth for newborn infants who are at high risk of needing respiratory support or more advanced resuscitation
- The role of suctioning of clear amniotic fluid at birth for preterm newborn infants
- Adherence to guidelines in relation to suctioning of the upper airway

Tactile Stimulation for Resuscitation Immediately After Birth (SysRev)

Rationale for Review

Tactile stimulation has been included in the initial steps of stabilization of the newborn infant in the treatment recommendations from ILCOR in 1999, 2006, 2010, 2015, and 2020^{139,186,187,200,201} largely based on expert opinion. Because the effectiveness of tactile stimulation to facilitate breathing at birth has never been systematically evaluated by ILCOR, this PICO question was prioritized by the NLS Task Force for SysRev (PROSPERO; registration CRD42021227768).²⁰² The full text of this CoSTR can be found on the ILCOR website.²⁰³

Population, Intervention, Comparator, Outcome, Study Design, and Time Frame

- **Population:** Term or preterm newborn infants immediately after birth with absent, intermittent, or shallow respirations.
- **Intervention:** Any tactile stimulation performed within 60 seconds after birth and defined as one or more of the following: rubbing the chest/sternum; rubbing the back; rubbing the soles of the feet; flicking the soles of the feet; combination of these methods. This intervention should be done in addition to routine handling with measures to maintain temperature.
- **Comparison**: Routine handling with measures to maintain temperature, defined as care taken soon after birth, including positioning, drying and additional thermal care.

• Outcome:

- Critical: Survival as reported by authors; neurodevelopmental outcomes
- Important: Establishment of spontaneous breathing without PPV (yes or no); time to the first spontaneous breath or crying from birth; time to heart rate 100/min or greater from birth; intraventricular hemorrhage (only in preterm infants <34 weeks' gestation); oxygen

and/or respiratory support at admission to a neonatal special or intensive care unit; admission to a neonatal special or intensive care unit for those not admitted by protocol based on gestational age and/or birthweight¹⁴²

- Potential subgroups were defined a priori: gestational age (<34 weeks', 34–36 6/7 weeks', and ≥37 weeks' gestation), cord management (early cord clamping, delayed cord clamping, and cord milking), clinical settings (high and low resource), and method of stimulation (type, number and/or duration of stimuli).
- Study design: RCTs and nonrandomized studies (non-RCTs, interrupted time series, controlled before-and-after studies, and cohort studies) were eligible for inclusion.
 Unpublished studies (conference abstracts, trial protocols) and animal studies were excluded.
- **Time frame:** All years and all languages were included if there was an English abstract. The literature search was first done on December 6, 2020, with final update on September 17, 2021.

Consensus on Science

The SysRev identified 2 observational studies.^{204,205} The study by Baik-Schneditz et al was not eligible for data analysis because of its critical risk of bias (mainly because of confounding by indication).²⁰⁴ Therefore, only the study by Dekker et al with 245 preterm newborn infants was analyzed (Table 24).²⁰⁵

				Anticipated absolute effects (n)	
Outcomes (importance)	Participants (studies), n	Certainty of the evidence (GRADE)	K K K	Risk with routine handling	RD with tactile stimulation in addition to routine handling
				only	
Tracheal	245 (1	Very low	0.41 (0.20-	177 per	105 fewer per 1000 infants
intubation in	observational		0.85)	1000	(142 fewer–27 fewer) were
delivery room	study)				intubated when tactile
(important)	Dekker et al, ²⁰⁵				stimulation was used
_	2018				

 Table 24. Tactile Stimulation for Resuscitation of Newborn Infants Immediately After

 Birth

GRADE indicates Grading of Recommendations Assessment, Development, and Evaluation; RD, risk difference; and RR, risk ratio.

No data were reported on other prespecified outcomes or by subgroups.

Treatment Recommendations

We suggest it is reasonable to apply tactile stimulation in addition to routine handling with measures to maintain temperature in newborn infants with absent, intermittent, or shallow respirations during resuscitation immediately after birth (weak recommendation, very low– certainty evidence).

Tactile stimulation should not delay the initiation of PPV for newborn infants who continue to have absent, intermittent, or shallow respirations after birth (good practice statement).

Justification and Evidence-to-Decision Framework Highlights

The complete evidence-to-decision table is provided in Appendix A.

The NLS Task Force based the treatment recommendation on several inferences. The very limited available data suggest a possible benefit to tactile stimulation in decreasing the need for tracheal intubation in preterm infants, but the certainty of evidence is very low. The results of the single study identified should be analyzed with caution because of indirectness (all 245

infants were put on CPAP before tactile stimulation, in contrast to the common practice of tactile stimulation before CPAP or PPV), possible selection bias (among 673 infants who were video-recorded immediately after birth, 245 (36%) were included in the study), and confounding (the clinical indication of tactile stimulation was retrospectively assessed and it could not be determined in 34% of the 585 tactile stimulation episodes). Additional observational studies showed that, in general, infants who received tactile stimulation responded with crying, grimacing, and body movements, although the methods of stimulation were variable and the outcomes analyzed were not exactly the same among the studies.²⁰⁶⁻²⁰⁹ These studies could not be included in the SysRev because of the lack of control groups who did not receive tactile stimulation.

A single-center RCT compared single versus repetitive tactile stimulation in newborn preterm infants immediately after birth. Patients in the repetitive stimulation group had higher oxygen saturation levels and lower oxygen requirements at the start of transport to the NICU. This study could not be included in the SysRev because of the lack of control group who did not receive tactile stimulation. A single-center RCT compared back rubbing to foot flicking to provide tactile stimulation in preterm and term infants with birthweight greater than 1500g who did not cry at birth. There was no difference between both techniques in achieving effective crying to prevent the need for PPV.²¹⁰ This study could not be included in the SysRev because of the lack of a control group that did not receive tactile stimulation.

In studies that analyze a bundle of procedures to stimulate respiratory transition at birth in low-resource settings, tactile stimulation, together with upper airway suction, triggered the initiation of spontaneous respirations.^{211,212} These studies could not be included in the SysRev

because of the inability to isolate the effects of tactile stimulation as well as the lack of a control group.

Despite the possible benefits outlined above, there are some concerns related to possible adverse effects of tactile stimulation in delaying the initiation of ventilation beyond 60 seconds after birth, which may then compromise the efficacy of the overall resuscitation.^{208,210,213} In addition, there is a report of soft tissue trauma after tactile stimulation.²¹⁴

Task Force Knowledge Gaps

For full list, see the complete CoSTR.²⁰³

- Effect of tactile stimulation on the main outcomes: breathing without PPV; time to the first spontaneous breath or crying from birth; and time to heart rate 100/min or greater from birth
- Effect of tactile stimulation on secondary outcomes: death in the delivery room, hospital death; neurodevelopmental outcomes; intraventricular hemorrhage only in preterm infants; oxygen and/or respiratory support at admission to a neonatal special unit or intensive care unit; and admission to a neonatal special or intensive care unit for those not admitted by protocol
- Effects of tactile stimulation in different gestational ages and with different cord management strategies
- Which patients benefit from tactile stimulation (all, patients with apnea, irregular breathing, or other)
- Indications for tactile stimulation
- Efficacy of different methods of tactile stimulation (rubbing, flicking, or other) and locations on the body
- Optimal duration and number of each stimulus

Delivery Room Heart Rate Monitoring to Improve Outcomes for Newborn Infants (SysRev)

Rationale for Review

Monitoring heart rate in the first minutes after birth was last reviewed by the NLS Task Force in 2015, at which time the focus was on which methods resulted in the most accurate measurement at the earliest time.¹³⁹ This SysRev focused on critical and important patient outcomes and was initiated from a priority list from the ILCOR NLS Task Force; PROSPERO; registration CRD42021283438. [Kawakami, 2022 ####] The full text of this review can be found on the ILCOR website.²¹⁵

Population, Intervention, Comparator, Outcome, Study Design, and Time Frame

- **Population:** Newborn infants in the delivery room
- Intervention: Use of electrocardiogram (ECG), Doppler device, digital stethoscope, photoplethysmography, video plethysmography, dry electrode technology, or any other newer modalities
- **Comparator:** 1) Pulse oximeter with or without auscultation; 2) auscultation alone; 3) between intervention comparison
- Outcome:
 - Critical: Chest compressions or epinephrine (adrenaline) administration; death before hospital discharge
 - Important: Duration of PPV; tracheal intubation; time from birth to heart rate 100/min or greater as measured by ECG; resuscitation team performance; unanticipated admission to the NICU.¹⁴²

- Study design: RCTs and non-randomized studies (non-RCTs, interrupted time series, controlled before-and-after studies, and cohort studies) were eligible for inclusion.
 Unpublished studies and case series were excluded.
- **Time frame:** All years and all languages were included if there was an English abstract. The literature search was performed on October 29, 2021.

Consensus on Science

Comparison 1: ECG Versus Auscultation Plus Pulse Oximeter During Resuscitation of

Newborn Infants

The SysRev identified 2 RCTs^{216,217} involving 91 newborn infants and 1 cohort study²¹⁸

involving 632 newborn infants.

Data relating to the key critical and important outcomes for this comparison are summarized in Table 25. Evidence for additional outcomes evaluated is included in the full online CoSTR.²¹⁵

 Table 25. ECG Versus Auscultation Plus Pulse Oximeter During Resuscitation of Newborn

 Infants

			RR (95% CI)	Anticipated absolute effects(n)	
Outcomes (importance)	Participants (studies), n	Certainty of the evidence (GRADE)		Risk with auscultation plus pulse oximeter	RD with use of ECG plus auscultation plus pulse oximeter
Duration of PPV (important)	51 (1 RCT) Abbey et al, ²¹⁶ 2021	Very low	N/A	Mean duration of PPV 196 s	MD 91 s shorter (78 s shorter–36 s longer) with addition of ECG
Tracheal intubation (important)	91 (2 RCTs) Abbey et al, ²¹⁶ 2021 Katheria et al, ²¹⁷ 2017	Low	1.34 (0.69– 2.59)	1	81 more infants per 1000 were intubated in the DR (74 fewer– 384 more) with the addition of ECG

				Anticipated at	osolute effects(n)
Outcomes (importance)	Participants (studies), n	Certainty of the evidence (GRADE)	RR (95% CI)	Risk with auscultation plus pulse oximeter	RD with use of ECG plus auscultation plus pulse oximeter
Tracheal intubation (important)	632 (1 observational study) Shah et al, ²¹⁸ 2019	Low	0.75 (0.62– 0.90)	475 per 1000	119 fewer infants per 1000 were intubated in the DR (181 fewer– 48 fewer) with the addition of ECG
Chest compressions (important)	632 (1 observational study) Shah et al, ²¹⁸ 2019	Low	2.14 (0.98– 4.70)	30 per 1000	35 more infants per 1000 received chest compressions (1 fewer–113 more) received chest compressions) with the addition of ECG
Epinephrine (adrenaline) (critical)	632 (1 observational study) Shah et al, ²¹⁸ 2019	Low	3.56 (0.42– 30.3)	4 per 1000	10 more infants per 1000 received epinephrine (2 fewer–111 more) with the addition of ECG
Death before discharge (critical)	51 (1 RCT) Abbey et al, ²¹⁶ 2021	Very low	0.96 (0.15– 6.31)	77 per 1000	3 fewer infants per 1000 died (74 fewer–462 more) with the addition of ECG
Death before discharge (critical)	632 (1 observational study) Shah et al, ²¹⁸ 2019	Low	0.96 (0.57– 1.61)	87 per 1000	3 fewer infants per 1000 died (38 fewer–53 more) with the addition of ECG

GRADE indicates Grading of Recommendations Assessment, Development, and Evaluation; ECG, electrocardiogram; DR, delivery room; MD, mean difference; RCT, randomized controlled trial; RD, risk difference; and RR, risk ratio.

No studies were found that provided outcomes relevant to this SysRev for other

modalities versus pulse oximetry and/or auscultation (Comparison 2) or for between-intervention

comparisons (Comparison 3).

Treatment Recommendations

Where resources permit, we suggest that the use of ECG for heart rate assessment of a newborn infant requiring resuscitation in the delivery room is reasonable (weak recommendation, low-certainty evidence).

Where ECG is not available, auscultation with pulse oximetry is a reasonable alternative for heart rate assessment, but the limitations of these modalities should be kept in mind (weak recommendation, low-certainty evidence).

There is insufficient evidence to make a treatment recommendation regarding the use of a digital stethoscope, audible or visible Doppler ultrasound, dry electrode technology, reflectancemode green light photoplethysmography, or transcutaneous electromyography of the diaphragm for heart rate assessment of a newborn in the delivery room.

Auscultation with or without pulse oximetry should be used to confirm the heart rate when ECG is unavailable, not functioning, or when pulseless electrical activity is suspected (good practice statement).

Justification and Evidence-to-Decision Framework Highlights

The evidence-to-decision table is provided in Appendix A.

The treatment recommendations were informed by low-certainty evidence that, for most outcomes, did not demonstrate improvement or suggestion of harm for any critical or important outcome. The only exception was a lower proportion of infants intubated in the delivery room in an observational study,²¹⁸ a result that was not confirmed in the meta-analysis of 2 RCTs.^{216,217} The potential advantages of rapid signal acquisition and continuous, accurate heart rate monitoring need to be weighed against the potential costs of equipment and training.

Task Force Knowledge Gaps

- Higher-certainty evidence regarding whether ECG or other modalities for heart rate assessment improve critical and important neonatal outcomes
- Impact of ECG or other modalities for heart rate measurement on resuscitation team performance
- Impact of ECG and other modalities for heart rate assessment on equity
- Cost-effectiveness of different modalities for heart rate assessment in the delivery room
- Whether the utility of various modalities varies by subgroups, including vigorous versus nonvigorous newborn infants, those who do or don't require tracheal intubation or more advanced resuscitation, by gestational age and weight, by method of umbilical cord management, and for pulseless electrical activity

CPAP Versus No CPAP for Term Respiratory Distress in the Delivery Room (SysRev)

Rationale for Review

CPAP has been included in the neonatal resuscitation algorithm to help infants with persistently labored breathing or cyanosis after the initial steps of resuscitation. For spontaneously breathing preterm newborn infants with respiratory distress requiring respiratory support in the delivery room, ILCOR has suggested initial use of CPAP rather than tracheal intubation and intermittent PPV.¹⁸⁷ Although it has become increasingly frequent to provide CPAP in the delivery room for late preterm and term infants, this practice has not been systematically evaluated by ILCOR and therefore this PICO was prioritized by the NLS Task Force (PROSPERO; registration CRD42021225812).[Shah, 2022 ####]

The full text of this CoSTR can be found on the ILCOR website.²¹⁹

Population, Intervention, Comparator, Outcome, Study Design, and Time Frame

- **Population:** In spontaneously breathing newly born ≥34 weeks' gestation newborn infants with respiratory distress and/or low oxygen saturations during transition after birth
- Intervention: CPAP at different levels with or without supplemental oxygen
- **Comparison**: No CPAP with or without supplemental oxygen
- Outcome:
 - Critical: Chest compressions in the delivery room; death at hospital discharge; moderate to severe neurodevelopmental impairment (>18 months)
 - Important: Admissions to the NICU or higher level of care; receiving any positive pressure support in the NICU; receiving tracheal intubation in the delivery room; use and duration of respiratory support in NICU; air-leak syndromes including pneumothorax and pneumomediastinum; length of hospital stay¹⁴²
- **Study design:** RCTs and nonrandomized studies (non-RCTs, interrupted time series, controlled before-and-after studies, cohort studies, and simulation studies) were eligible for inclusion. Unpublished studies (eg, conference abstracts, trial protocols) and animal studies were excluded.
- Time frame: All years and all languages were included if an English abstract was available. The literature search was first performed on November 30, 2020, and updated on October 11, 2021.

Consensus on Science

The SysRev identified 2 RCTs^{220,221} involving 323 newborn infants and 2 observational studies, 1 of which was divided in 2 publications²²²⁻²²⁴, involving 8476 infants. Relevant data

from the author via electronic communications have been collated into 1 study for purpose of

this meta-analysis.^{222,223} Meta-analysis of RCT evidence is shown in Table 26. No evidence was

identified for tracheal intubation, need for chest compressions in the delivery room and

neurodevelopmental impairment.

Table 26. CPAP at Different Levels With or Without Supplemental Oxygen Versus No
CPAP With or Without Supplemental Oxygen for Respiratory Distress in the Delivery
Room for Late Preterm and Term Newborn Infants

		Certainty		Anticipated absolute effects (n)			
Outcomes (importance)	Participants (studies), n	of the evidence (GRADE)	RR (95% CI)	Risk with no CPAP provided for respiratory distress in the DR	RD with CPAP provided for respiratory distress in the DR		
NICU admissions (important)	323 (2 RCTs) Celebi et al, ²²⁰ 2016 Osman et al, ²²¹ 2019	Very low	0.28 (0.11– 0.67)	129 per 1000	94 fewer per 1000 late preterm and term newborn infants (115 fewer–44 fewer) were admitted to the NICU when CPAP was used		
Air-leak syndromes (important)	8476 (3 observational studies) Hishikawa et al, ²²³ 2015 Hishikawa et al, ²²² 2016 Smithhart et al, ²²⁴ 2019	Very low	4.92 (4.13– 5.87)	34 per 1000	133 more per 1000 late preterm and term newborn infants (106 more–166 more) developed air-leak syndrome when CPAP was used		
NICU respiratory support (important)	323 (2 RCTs) Celebi et al, ²²⁰ 2016 Osman et al, ²²¹ 2019	Very low	0.18 (0.06–0.6)	97 per 1000	79 fewer per 1000 late preterm and term newborn infants (91 fewer–39 fewer) needed NICU respiratory support when CPAP was used		
Death before discharge from hospital (critical)	323 (2 RCTs) Celebi et al, ²²⁰ 2016 Osman et al, ²²¹ 2019	Very low	0.30 (0.01– 6.99)	6 per 1000	5 fewer per 1000 late preterm and term newborn infants (6 fewer–39 more) died before discharge from the hospital when CPAP was used		

CPAP indicates continuous positive airway pressure; DR, delivery room; GRADE, Grading of Recommendations Assessment, Development, and Evaluation; NICU, neonatal intensive care unit; PPV, positive pressure ventilation; RCT, randomized controlled trial; RD, risk difference; and RR, risk ratio.

Treatment Recommendations

For spontaneously breathing late preterm and term newborn infants in the delivery room with respiratory distress, there is insufficient evidence to suggest for or against routine use of CPAP compared with no CPAP.

Justification and Evidence-to-Decision Framework Highlights

The evidence-to-decision table is provided in Appendix A.

In making this recommendation, the NLS Task Force acknowledges that the use of CPAP in the delivery room has been recommended for infants with persistent signs of respiratory distress, labored breathing, or cyanosis after the initial steps of resuscitation. This was mainly extrapolated from evidence in preterm patients. The benefits and risks in late preterm and term newborn infants had not been systematically reviewed before this review. The 2 RCTs included only 323 subjects, who were all delivered by cesarean section.^{220,221} One RCT enrolled 259 newborns and used prophylactic CPAP.²²⁰ Within the observational studies, a positive association between the use of CPAP and the presence of air-leak syndromes was identified (1 nested cohort study included only newborn infants admitted to the NICU). Therefore, in concluding that no recommendation could be made, the task force integrated the values placed on avoidance of potential harm, as noted by the positive association between CPAP use and airleak syndromes, and potential benefit, as noted by the reduction in NICU admission among infants born by cesarean section.

Knowledge Gaps

• Large multicenter RCTs evaluating the effect of delivery room CPAP for late preterm and term newborns with respiratory distress are needed.

- The effect of CPAP in the delivery room for late preterm and term infants delivered vaginally
- The impact of labor on outcomes when CPAP is used for respiratory distress in the delivery room
- The effect of CPAP among different populations: late preterm versus term and post-term newborn infants
- The effect of CPAP after any previous positive pressure support (PPV or sustained inflation)
- Whether effects of CPAP differ with or without the use of supplemental oxygen
- The effect of the modes of support: interfaces (facemask versus nasal prongs, cannula versus alternative airway), devices (T-piece versus flow-inflating bag); and level of CPAP support: high CPAP (>6 cm H₂O) versus low CPAP (4–6 cm H₂O).

Supraglottic Airways for Neonatal Resuscitation (SysRev)

Rationale for Review

Given the importance of effective PPV for resuscitation of newborn infants and the limitations of using either a face mask or endotracheal tube, the NLS Task Force prioritized evaluation of SGAs for PPV. In 2015, the NLS Task Force conducted a SysRev focused on using an SGA compared with endotracheal intubation as the secondary device for PPV if initial ventilation with a face mask failed. For this review, the task force aimed to compare the use of an SGA with a face mask as the initial device for administering PPV during resuscitation immediately after birth and to determine if use of an SGA would decrease the probability of failing to improve with initial PPV. Additional randomized trials comparing an SGA with a face mask as the initial device for PPV have been published since the previous review. Thus, a SysRev was undertaken (PROSPERO; registration CRD42021230722). [Yamada, 2022 ####]

The full text of this CoSTR can be found on the ILCOR website.²²⁵

Population, Intervention, Comparator, Outcome, Study Design, and Time Frame

- **Population:** Newborn infants 34 0/7 weeks' or more gestation receiving intermittent PPV during resuscitation immediately after birth
- Intervention: SGA
- **Comparator:** Face mask
- Outcome:
 - Critical: Chest compressions or epinephrine (adrenaline) administration during initial resuscitation; survival to hospital discharge; neurodevelopmental impairment at 18 months of age or older (abnormal motor, sensory, or cognitive function or low educational achievement at ≥18 months of age using an appropriate, standardized test or examination)
 - Important: Failure to improve with the device; tracheal intubation during initial resuscitation; time to heart rate greater than 100/min during initial resuscitation; duration of PPV during initial resuscitation; time to cessation of PPV; soft tissue injury (as defined by authors); admission to the NICU; air leak during the initial hospital stay (presence of pneumothorax, pneumomediastinum, pulmonary interstitial emphysema, or pneumopericardium) ¹⁴²

Potential subgroups (late preterm vs term and cuffless vs cuffed supraglottic airway) were defined a priori.

• **Study design:** RCTs, quasi-RCTs, and nonrandomized studies (non-RCTs, interrupted time series, controlled before-and-after studies, cohort studies) were eligible for inclusion. Quasi-RCTs were included with RCTs in meta-analyses. Unpublished studies (eg, conference

abstracts, trial protocols) were excluded. Outcomes from observational studies were assessed if there were fewer than 2 included RCTs/quasi-RCTs or if the certainty of evidence from RCTs/quasi-RCTs was scored very low.

• **Time frame:** All years and all languages were included if there was an English abstract. The literature search was updated to December 9, 2021.

Consensus on Science

The SysRev identified 5 RCTs²²⁶⁻²³⁰ and 1 quasi-RCT²³¹ involving a total of 1857 newborn infants, and 2 retrospective cohort studies^{232,233} involving 218 newborn infants. An additional study²³⁴ reported secondary outcomes from a subset of newborn infants enrolled in an included RCT.²²⁷ Meta-analysis results are shown in Table 27. For additional outcomes please

see the full CoSTR.²²⁵

Outcomes	Participants	Certainty of	RR	Anticipated absolute effects (n)		
(importance)	(studies), n	the evidence (GRADE)	(95% CI)	Risk with face mask	RD with SGA	
Failure to improve with device (important)	1823 (6 RCTs) Feroze et al, ²²⁶ 2008 Pejovic et al, ²²⁷ 2020 Pejovic et al, ²²⁸ 2018 Singh et al, ²²⁹ 2005 Trevisanuto et al, ²³⁰ 2015 Zhu et al, ²³¹ 2011	Moderate	0.24 (0.17–0.36)	138 per 1000	105 fewer per 1000 infants (114 fewer– 88 fewer) had failure to improve when an SGA was used	
Endotracheal intubation during resuscitation (important)	1715 (4 RCTs) Pejovic et al, ²²⁷ 2020 Singh et al, ²²⁹ 2005 Trevisanuto et al, ²³⁰ 2015 Zhu et al, ²³¹ 2011	Low	0.34 (0.20– 0.56)	62 per 1000	41 fewer per 1000 infants (49 fewer– 27 fewer) had endotracheal intubation during resuscitation when an SGA was used	
Chest compressions during resuscitation (critical)	1346 (3 RCTs) Pejovic et al, ²²⁷ 2020 Singh et al, ²²⁹ 2005	Low	0.97 (0.56– 1.65)	39 per 1000	1 fewer per 1000 infants (17 fewer– 26 more) had chest compressions	

 Table 27. Meta-analysis of RCTs for SGA Compared With Face Mask for PPV During

 Resuscitation Immediately After Birth

Outcomes (importance)	Participants	Certainty of	RR	Anticipated absolute effects (n)		
	(studies), n	the evidence (GRADE)	(95% CI)	Risk with face mask	RD with SGA	
	Trevisanuto et al, ²³⁰ 2015				during resuscitation when an SGA was used	
Epinephrine (adrenaline) administration during resuscitation (critical)	192 (2 RCTs) Singh et al, 2005 ²²⁹ Trevisanuto et al, ²³⁰ 2015	Low	0.67 (0.11–3.87)	31 per 1000	10 fewer per 1000 infants (28 fewer– 90 more) had epinephrine (adrenaline) administration during resuscitation when an SGA was used	
Time to heart rate >100/min (important)	46 (1 RCT) Pejovic et al, ²³⁴ 2021	Low		The mean time was 78 s	MD 66 s lower (31 s lower–100 s lower) when an SGA was used	
Duration of PPV (important)	610 (4 RCTs) Pejovic et al, ²²⁸ 2018 Singh et al, ²²⁹ 2005 Trevisanuto et al, ²³⁰ 2015 Zhu et al, ²³¹ 2011	Low	NA	The mean time was 62 s	MD 18 s lower (24 s lower–36 s lower) when an SGA was used	
Admission to neonatal intensive care (important)	1314 (4 RCTs) Pejovic et al, ²²⁷ 2020 Pejovic et al, ²²⁸ 2018 Singh et al, ²²⁹ 2005 Trevisanuto et al, ²³⁰ 2015	Very low	0.97 (0.94– 1.00)	847 per 1000	25 fewer per 1000 infants (51 fewer–0 fewer) when an SGA was used	
Air leak (important)	192 (2 RCTs) Singh et al, 2005^{229} Trevisanuto et al, 2015^{230}	Very low	Not estimable (no events)	0 per 1000	0 fewer per 1000 infants (30 fewer– 30 more) when an SGA was used	
Soft tissue injury (important)	1724 (4 RCTs) Pejovic et al, 2020^{227} Singh et al, 2005^{229} Trevisanuto et al, 2015^{230} Zhu et al, 2011^{231}	Low	1.05 (0.15– 7.46)	2 per 1000	0 fewer per 1000 infants (2 fewer–15 more) when an SGA was used	
Survival to hospital discharge (critical)	50 (1 RCT) Singh et al, ²²⁹ 2005	Low	1.00 (0.93– 1.08)	1000 per 1000	0 fewer per 1000 infants (40 fewer– 20 more) when an SGA was used	

GRADE indicates Grading of Recommendations Assessment, Development, and Evaluation; NA, not applicable; NICU, neonatal intensive care unit; PPV, positive pressure ventilation; RCT, randomized controlled trial; RD, risk difference; MD, mean difference; RR, risk ratio; and SGA, supraglottic airway.

Subgroup Analyses

No data were reported to perform prespecified subgroup analyses by gestational age (term versus late preterm). For the planned subgroup analysis based on device design (i-GelTM versus other device), failure to improve with the device was the only outcome with sufficient data to analyze, and there was no evidence of an interaction (P= 0.29, I₂=10%).

Treatment Recommendations

Where resources and training permit, we suggest that a supraglottic airway may be used in place of a face mask for newborn infants 34 0/7 weeks' or more gestation receiving intermittent positive pressure ventilation during resuscitation immediately after birth (weak recommendation, low-certainty evidence).

Justification and Evidence-to-Decision Framework Highlights

The evidence-to-decision table is provided in Appendix A.

In making these recommendations, the NLS Task Force acknowledged several issues. SGAs compared with face masks may be more effective in achieving successful resuscitation of late preterm and term newborn infants who receive PPV immediately after birth. Although *failure to improve with device* was variously defined by authors and often included cross-over to the alternative device, there was a strong inverse association between the use of an SGA and risk of tracheal intubation. This may reflect a greater likelihood of achieving effective ventilation with use of an SGA. Nevertheless, given that the interventions were not blinded and the ability to intubate in the largest trial was dependent on physician availability, there are risks of differential co-interventions and other biases. Furthermore, optimal information size was not achieved for any of the critical or important prespecified outcomes except duration of PPV. Consequently, further trials are needed before stronger recommendations can be made about use of SGAs as the initial device for PPV.

Balancing factors in the task force recommendation include the training required for SGA insertion and the safety of the SGA compared with face mask ventilation. Although the training provided was incompletely documented in several studies^{226,229,231} and no study compared the effectiveness of different training programs, the success rate for insertion was high despite apparently short-duration training with a manikin. In the largest trial,²²⁷ participating midwives received brief didactic training for insertion of a cuffless supraglottic device as part of a Helping Babies Breathe course and were required to demonstrate 3 successful insertions in a manikin before participating in the study. Only 2 RCTs^{229,230} indicated that successful insertion in a newborn infant was a prerequisite to study participation. Although the individual studies had limited power to establish the safety of the SGA, the task force was encouraged by the relatively large number of newborn infants reported across all studies and the small number of adverse events.

Costs and cost-effectiveness have not been studied. In 4 of the included studies^{227,228,230,231} the authors indicated that the device was provided as part of the study. The availability of resources and economic considerations will influence decisions regarding use of an SGA or face mask. Given the large number of infants worldwide who receive PPV after birth, it is important to evaluate the cost-effectiveness of the SGA as the initial device for PPV.

Task Force Knowledge Gaps

For a complete list, please see the online CoSTR.²²⁵

• Training requirements to achieve and maintain competency with SGA insertion, including different types of devices

- Effectiveness and safety of SGAs as the initial device for PPV in high-resource settings
- Effectiveness and safety of SGAs compared with face masks during chest compressions
- Effectiveness and safety of different SGA designs
- Effectiveness and safety of SGAs for PPV among newborn infants less than 34 weeks' gestation

Respiratory Function Monitoring During Neonatal Resuscitation at Birth (SysRev)

Rationale for Review

Respiratory function monitors (RFMs) have the potential to improve the outcomes of assisted ventilation during resuscitation of newborn infants by helping resuscitation teams avoid excessive (harmful to the lungs and brain) or insufficient (ineffective) tidal volumes during resuscitation. Inappropriate tidal volumes can be caused by mask leak, airway obstruction, or ventilation pressures that are too high or too low for the mechanical characteristics of the individual infant's lungs. A SysRev conducted for ILCOR in 2015¹³⁹ found only 1 small eligible study.²³⁵ Because the NLS Task Force was aware that further studies had been published, a SysRev was prioritized (PROSPERO; registration CRD42021278169).[Fuerch, 2022 ####] The full text of this review can be found on the ILCOR website.²³⁶

Population, Intervention, Comparator, Outcome, Study Design, and Time Frame

- **Population:** Newborn infants receiving respiratory support at birth
- **Intervention:** Display of an RFM
- **Comparator:** No display of an RFM
- Outcome:
 - Critical: Death before discharge, severe intraventricular hemorrhage

- Important: Response to and characteristics of the resuscitation; achieving desired tidal volumes; percentage maximum mask leak; intubation in the delivery room; pneumothorax; bronchopulmonary dysplasia; duration of respiratory support during neonatal intensive care¹⁴²
- Study design: RCTs, quasi-RCTs, and non-randomized studies (non-RCTs, interrupted time series, controlled before-and-after studies, cohort studies) were eligible for inclusion.
 Unpublished studies were excluded.
- **Time frame:** All years and all languages were included if there was an English abstract. The literature search was updated to December 31, 2021.

Consensus on Science

The SysRev identified 3 RCTs,^{235,237,238} involving 443 newborns.

Data relating to the key critical and important outcomes for this comparison are

summarized in Table 28. Evidence for additional outcomes evaluated is included in the full

online CoSTR.236

		Certainty of		Anticipated absolute effects (n)		
Outcomes (importance)	Participants (studies), n	the evidence (GRADE)	RR (95% CI)	Risk with standard care	RD with use of standard care plus an RFM	
Tracheal intubation in the delivery room (important)	443 (3 RCTs) Schmölzer et al, ²³⁵ 2012 Van Zanten et al, ²³⁷ 2021 Zeballos Sarrato et al, ²³⁸ 2019	Very low	0.90 (0.55– 1.48)	353 per 1000	40 fewer infants per 1000 (220 fewer–130 more) were intubated in the DR when an RFM was used	
Achieving desired tidal volumes (important)	337 (2 RCTs) Schmölzer et al, ²³⁵ 2012 Van Zanten et al, ²³⁷ 2021	Low	0.96 (0.69– 1.34)	301 per 1000	10 fewer infants per 1000 (110 fewer–80 more) achieved the desired tidal volume in	

Table 28. Use of an RFM During Neonatal Resuscitation at Birth

		Certainty of		Anticipated	absolute effects (n)
Outcomes (importance)	Participants (studies), n	the evidence (GRADE)	RR (95% CI)	Risk with standard care	RD with use of standard care plus an RFM
					the DR when an RFM was used
Pneumothorax (important)	393 (2 RCTs) Van Zanten et al, ²³⁷ 2021 Zeballos Sarrato et al, ²³⁸ 2019	Low	0.54 (0.26– 1.13)	94 per 1000	40 fewer infants per 1000 (90 fewer–10 more) had a pneumothorax when an RFM was used
Death before hospital discharge (critical)	442 (3 RCTs) Schmölzer et al, ²³⁵ 2012 Van Zanten et al, ²³⁷ 2021 Zeballos Sarrato et al, 2019 ²³⁸	Low	1.00 (0.66– 1.52)	165 per 1000	0 fewer infants per 1000 (70 fewer–70 more) died when an RFM was used
Severe IVH (critical)	287 (1 RCT) Van Zanten et al, ²³⁷ 2021	Low	0.96 (0.38– 2.42	60 per 1000	0 fewer infants per 1000 (60 fewer–50 more) developed severe IVH when an RFM was used
IVH (all grades) (important)	393 (2 RCTs) Van Zanten et al, ²³⁷ 2021 Zeballos Sarrato et al, ²³⁸ 2019	Low	0.69 (0.49– 0.96)	318 per 1000	100 fewer infants per 1000 (180 fewer–10 fewer) developed IVH (all grades) when an RFM was used
BPD (important)	393 (2 RCTs) Van Zanten et al, ²³⁷ 2021 Zeballos Sarrato et al, ²³⁸ 2019	Low	0.85 (0.7– 1.04)	527 per 1000	80 fewer infants per 1000 (180 fewer–20 more) developed BPD when an RFM was used

BPD indicates bronchopulmonary dysplasia; DR, delivery room; GRADE; Grading of Recommendations Assessment, Development, and Evaluation; IVH, intraventricular hemorrhage; PPV, positive pressure ventilation; RCT, randomized controlled trial; RD, risk difference, RFM, respiratory function monitor; and RR, risk ratio.

Treatment Recommendations

There is insufficient evidence to make a recommendation for or against the use of a

respiratory function monitor in newborn infants receiving respiratory support at birth (low-

certainty evidence).

Justification and Evidence-to-Decision Framework Highlights

The NLS Task Force concluded that a treatment recommendation could not be made because there was low confidence in effect estimates, and most could not rule out either clinical benefit or harm. Although intraventricular hemorrhage (all grades) was significantly reduced, there was no effect demonstrated for severe intraventricular hemorrhage. The finding had low certainty, was one of numerous secondary outcomes for the study that most influenced the pooled difference, and was the only finding of the study that suggested benefit of RFM use.²³⁷ Information on costs of purchasing RFM devices and of training in their use was not available but would need to be justified by evidence of improvement in outcomes.

Task Force Knowledge Gaps

- Human factor assessment (eg, the design of RFM displays to ensure teams can make best use of displayed data during resuscitation, without distraction from other critical tasks)
- Development of low-cost devices for use in lower-resourced settings
- Training requirements to achieve and maintain competency in the acquisition and accurate interpretation of data derived from RFM during neonatal resuscitation
- Cost-effectiveness for the use of RFM (versus no RFM) during neonatal resuscitation
- Standardized definitions of respiratory function outcomes (eg, what comprises clinically significant mask leak or optimal versus suboptimal tidal ventilation during resuscitation)

EDUCATION, IMPLEMENTATION, AND TEAMS

Prearrest Prediction of Survival After IHCA (SysRev)

Rationale for Review

Only 15% to 30% of patients with IHCA will survive to hospital discharge, and some of these patients will survive with unfavorable functional outcome.²³⁹ The ability to predict which patients are likely, or unlikely, to benefit from CPR is important to patients and caregivers. This SysRev aimed to determine whether any prearrest clinical prediction rules can predict the chance of surviving an IHCA, with or without favorable functional outcome.

The review was registered at PROSPERO: CRD42021268005. The full text of this CoSTR is available on the ILCOR website.²⁴⁰

Population, Intervention, Comparator, Outcome, Study Design, and Time Frame

- Population: Hospitalized adults and children experiencing an IHCA
- Intervention: Any prearrest clinical prediction rule
- **Comparator:** No clinical prediction rule
- Outcome:
 - Critical: survival to hospital discharge or to 30 days, survival with favorable neurological outcome
 - Important: ROSC
- Study design: RCTs and nonrandomized studies (non-RCTs, interrupted time series, controlled before-and-after studies, cohort studies, case series where n ≥5) were included. Unpublished results (eg, trial protocols), commentaries, editorials, reviews, and conference abstracts were excluded.

• **Time frame:** All years and all languages were included if there was an English abstract. The search was updated to January 13, 2022.

Consensus on Science

This review identified 23 studies²⁴¹⁻²⁶³ investigating 13 different prearrest prediction rules for survival after IHCA. We did not conduct any meta-analyses because the included studies were all based on historical (retrospective) cohort studies and judged to have very serious risk of bias and because the evidence was considered very low certainty for all available scores. Table 29 summarizes the studies for the prearrest morbidity score (PAM), and Table 30 summarizes the prognosis after resuscitation (PAR) score, aiming to predict survival to hospital discharge.

 Table 29. Predictive Values of Historical Cohort Studies Using the PAM Score to Predict

 Survival to Hospital Discharge (Presented With 95% CI)

Study	Cutoff	Sensitivity (95% CI)	Specificity (95% CI)	NPV (95% CI)	PPV (95% CI)
Ebell et al, ²⁴⁷ 1997	PAM >8	100 (90.0–100)	1.8 (0.9–3.1)	100 (71.5–100)	5.4 (3.8–7.5)
O'Keeffe et al, ²⁵⁷ 1994	PAM >8	100 (86.3–100)	2.0 (0.6–4.5)	100 (47.8–100)	9.1 (6.0–13.2)
Bowker et al, ²⁴¹ 1999	PAM >6	100 (92.5–100)	12.9 (8.7–18.1)	100 (87.7–100)	19.9 (15.0–25.6)
Ohlsson et al, ²⁵⁶ 2014	PAM >7	96.6 (88.1–99.6)	10.9 (7.2–15.7)	92.6 (75.7–99.1)	21.5 (16.7–27.0)
George et al, ²⁴⁸ 1989	PAM >8	100 (89.7–100)	22.6 (15.1–31.8)	100 (85.8–100)	29.3 (21.2–38.5)
Cohn et al, ²⁴³ 1993	PAM >8	100 (92.0–100)	25.0 (12.7–41.2)	100 (69.2–100)	59.5 (47.4–70.4)

NPV indicates negative predictive value; PAM, prearrest morbidity; and PPV, positive predictive value.

 Table 30. Predictive Values of Historical Cohort Studies Using the PAR Score to Predict

 Survival to Hospital Discharge (Presented With 95% CI)

Study	Cutoff	Sensitivity (95% CI)	Specificity (95% CI)	NPV (95% CI)	PPV (95% CI)
Ebell et al, ²⁴⁷ 1997	PAR >8	82.9 (66.4–93.4)	20.1 (17.0–23.5)	95.4 (90.3–98.3)	5.5 (3.7–7.8)
O'Keeffe et al, ²⁵⁷ 1994	PAR >5	100 (86.3–100)	22.8 (17.8–28.4)	100 (93.9–100)	11.1 (7.3–16.0)
Bowker et al, ²⁴¹ 1999	PAR >7	100 (94.7–100)	14.3 (9.7–20.0)	100 (87.7–100)	28.8 (23.1–35.0)

Study	Cutoff	Sensitivity (95% CI)	Specificity (95% CI)	NPV (95% CI)	PPV (95% CI)
Ohlsson et al, ²⁵⁶ 2014	PAR >10	98.3 (90.8–100)	10.5 (6.8–15.2)	96.0 (79.6–99.9)	21.8 (16.9–27.2)

NPV indicates negative predictive value; PAR, prognosis after resuscitation; and PPV, positive predictive value.

Other smaller studies report prediction of survival to hospital discharge using the

Modified Early Warning Score,²⁶² the National Early Warning Score,^{251,260} the Clinical Frailty

Scale,²⁵³ a neuronal network,²⁴⁴ and the Acute Physiology and Chronic Health III score.²⁴⁷

Details for these are available in the CoSTR on the ILCOR website.²⁴⁰

The Good Outcome Following Attempted Resuscitation (GO-FAR) score, which aims to predict survival with a CPC of 1, has been evaluated in several studies. These results are presented in Table 31. One additional study²⁵² reported a negative predictive value of 87.0 (95% CI, 73.7–95.1) and a sensitivity of 94.1 (95% CI, 87.6–97.8) for the GO-FAR score to predict survival to hospital discharge (details are available on the ILCOR website²⁴⁰).

Table 31. Predictive Values of Historical Cohort Studies Using the GO-FAR Score toPredict Survival to Hospital Discharge With a CPC of 1 (Presented With 95% CIs)

Study	Cutoff	Sensitivity (95% CI)	Specificity (95% CI)	NPV (95% CI)	PPV (95% CI)
Ebell et al, ²⁴⁶ 2013	≥24	99.3 (99.0–99.5)	10.4 (10.1–10.7)	99.2 (98.9–99.5)	11.4 (11.1–11.7)
Piscator et al, ²⁵⁸ 2018	≥24	99.3 (96.1–100.)	9.7 (6.9–13.1)	97.4 (86.2–99.4)	28.9 (24.9–33.1)
Rubins et al, ²⁶¹ 2019	≥24	95.7 (88.0–99.1)	17.1 (13.2–21.6)	95.0 (86.1–99.0)	19.5 (15.5–24.1)
Cho et al, ²⁴² 2020	≥24	99.4 (96.6–100)	11.4 (9.4–13.8)	99.0 (94.4–100)	17.6 (15.2–20.3)
Thai et al, ²⁶³ 2019	≥24	99.2 (99.0–99.4)	8.2 (7.9–8.4)	98.4 (97.9–98.7)	16.1 (15.8–16.4)
Ohlsson et al, ²⁵⁵ 2016	≥24	97.8 (88.2–99.9)	10.3 (6.8–14.9)	96.2 (80.4–99.9)	16.9 (12.5–22.0)

CPC indicates Cerebral Performance Category; GO-FAR, Good Outcome Following Attempted Resuscitation; NPV, negative predictive value; and PPV, positive predictive value.

Two classification and regression tree models (versions 1 and 2) aimed to predict survival

with a CPC of 1, whereas the GO-FAR 2 score and the Prediction of Outcome for In-Hospital

Cardiac Arrest (PIHCA) score investigated prediction of survival with CPC 2 or less. These

results are presented in Table 32.

Table 32. Predictive Values of Historical Cohort Studies Using Scores Other Than the GO-FAR Score to Predict Survival to Hospital Discharge With Favorable NeurologicalOutcome (Presented With 95% CIs)

0.0000000000000000000000000000000000000					
Study	Model	Sensitivity (95% CI)	Specificity (95% CI)	NPV (95% CI)	PPV (95% CI)
Ebell et al, ²⁴⁵ 2013	CART 1	96.0 (94.9–96.9)	24.1 (23.3–24.8)	97.8 (97.2–98.3)	14.6 (13.9–15.3)
Guilbault et al, ²⁵⁰ 2017	CART 1	95.6 (84.9–99.5)	28.5 (22.9–34.6)	97.2 (90.2–99.7)	19.9 (14.8–25.9)
Ebell et al, ²⁴⁵ 2013	CART 2	94.1 (92.9–95.2)	30.9 (30.1–31.7)	97.5 (97.0–98.0)	15.5 (14.8–16.2)
Guilbault et al, ²⁵⁰ 2017	CART 2	95.6 (84.9–99.5)	36.4 (30.3–42.8)	97.8 (92.2–99.7)	21.8 (16.3–28.3)
George et al, ²⁴⁹ 2020	GO-FAR 2	98.9 (98.6–99.1)	6.7 (6.4–6.9)	95.7 (94.9–96.4)	21.8 (21.4–22.2)
Piscator et al, ²⁵⁹ 2019	PIHCA	99.4 (96.8–100)	8.4 (6.0–11.3)	97.4 (86.5–99.9)	29.4 (25.7–33.2)

CART indicates classification and regression tree model; GO-FAR, Good Outcome Following Attempted Resuscitation; NPV, negative predictive value; PIHCA, Prediction of Outcome for In-Hospital Cardiac Arrest; and PPV, positive predictive value.

In summary, none of the scores were able to reliably predict survival on the basis of

patient factors before an IHCA, and no studies were found on the clinical implementation of such

a score.

Treatment Recommendations

We recommend against using any currently available prearrest prediction rule as a sole reason to not resuscitate an adult with in-hospital cardiac arrest (strong recommendation, very low–certainty evidence).

We are unable to make a recommendation about using prearrest prediction rules to facilitate do-not-attempt CPR (DNACPR) discussions with adult patients, pediatric patients, or their substitute decision-maker, as there are no studies investigating the clinical implementation of such a score for this indication.

We are unable to provide any recommendation for pediatric patients as no studies on children were identified.

Justification and Evidence-to-Decision Framework Highlights

The complete evidence-to-decision table is provided in Appendix A.

In making this recommendation, the task force valued a perfect negative predictive value (ie, no chance of classifying a survivor as a nonsurvivor). None of the existing prearrest prediction rules were able to reliably predict no chance of survival to hospital discharge or survival with favorable functional outcome. The task force also noted that most studies predicting survival to hospital discharge (eg, the PAM or PAR score) were based on cohorts before 2000, when survival rates were lower. The PAM score and the PAR scores did not perform consistently across cohorts.

Some studies were based on selected patient cohorts or patients from a single center, raising concerns about generalizability. All studies were based on historical cohorts, and concern for bias and unaccounted-for confounding was high. As there were no prospective studies identified on clinical implementation of a prearrest prediction model to facilitate DNACPR discussions, it is unknown whether the clinical implementation of such a score would influence the rate of DNACPR discussions, the rate of DNACPR orders, survival outcomes, or patient perspectives.

All scores predicting survival with favorable neurological outcome included variables such as hypotension, respiratory insufficiency, or sepsis before the arrest that may change during the hospital admission. Thus, there are concerns about applicability of these models.

The GO-FAR score identifies the chance of survival with good neurological outcome (ie, CPC of 1), although patients and relatives may value survival with a CPC of greater than 1.

Scores that can predict a very low chance of survival with favorable functional outcome may be used to facilitate DNACPR discussions with patients, although the score may not be able to predict no chance of survival or survival with favorable neurological outcome.

Task Force Knowledge Gaps

- Assessment of clinical decision tools to predict ROSC and long-term outcomes beyond hospital discharge or quality-of-life outcomes
- Assessment of clinical decision tools for prearrest prediction of IHCA survival for children
- We did not identify any score predicting survival with favorable neurological outcome that did not include physiological deterioration before cardiac arrest, which may be difficult to apply prospectively.
- Prospective validation studies or randomized trials of in-hospital prearrest clinical prediction rules to be used for DNACPR discussions and/or making DNACPR orders
- How the use of clinical decision tools affects resuscitation practices, cost-benefit, or survival outcomes

BLS Training for High-Risk Populations (SysRev)

Rationale for Review

This topic was last reviewed in 2015.^{264,265} The Education, Implementation, and Teams Task Force prioritized this question because there have been several high-quality studies since the last review, and existing evidence suggests that likely rescuers are unlikely to seek training on their own but are willing to receive training.²⁶⁶⁻²⁶⁸ The review was registered at PROSPERO: CRD42021233811, and the full text of this CoSTR is on the ILCOR website.²⁶⁹

Population, Intervention, Comparator, Outcome, Study Design, and Time Frame

- **Population:** For adults and children at high risk of OHCA
- **Intervention:** BLS training of likely rescuers
- **Comparator:** No training
- Outcome:
 - Patient outcomes:
 - Critical: Favorable neurological outcome at hospital discharge or to 30 days, survival at hospital discharge or to 30 days
 - Important: ROSC, rates of bystander CPR (subsequent use of skills), bystander CPR quality during an OHCA (any available CPR metrics), and rates of AED use (subsequent use of skills)
 - Educational outcomes:
 - Critical: CPR quality and correct AED use at the end of training and within 12 months of training

- Important: CPR and AED knowledge at the end of training and within 12 months after training; confidence and willingness to perform CPR at the end of training and within 12 months after training, and CPR training of others
- **Study design:** RCTs and nonrandomized studies (non-RCTs, interrupted time series, controlled before-and-after studies, cohort studies) were eligible for inclusion. Unpublished studies (including conference abstracts, trial protocols) were excluded.
- **Time frame:** All years and all languages were included if there was an English abstract. Literature search was updated to October 15, 2021.

Consensus on Science

The SysRev performed as part of the 2015 ILCOR review^{264,265} identified 32 studies relating to BLS training in likely rescuers (eg, family or caregivers) of high-risk OHCA groups.²⁷⁰⁻³⁰¹

One study²⁹⁵ from the 2015 review was not relevant for the revised outcomes in this update and was not included in this updated review.

In our updated search, we found 12 new studies published since the 2015 review.³⁰²⁻³¹³

The 12 new studies included likely rescuers of patients with cardiac disease,^{303-311,313} drug use disorder,³⁰² pulmonary disease,³¹¹ or an acute life-threatening event.³¹² Similar to the 2015 reviewed studies, these new studies used varying methods for BLS training, control groups, and assessment of outcomes and were too heterogeneous for a meta-analysis of any outcome to be performed.

Only 2 of the new studies examined the subsequent use of BLS skills and patient outcomes.^{302,312} Overall, there remain too few witnessed OHCA events and rates of loss to follow-up that are too high for us to be confident in the effect of

training.^{270,275,278,280,283,290,291,296,297,302,312} Most of the old and new studies assessing educational outcomes demonstrated improvements in BLS skills and knowledge immediately after training.^{271,273,276,277,284,287-289,292,293,299-301,304-307,309-313}

In assessing long-term outcomes, there was some degradation in some BLS skills compared with immediately posttraining but an improvement in skills and knowledge compared with baseline.^{272,304,306,307,309,312} Training immediately increased willingness^{272,278,282,285-} ^{287,294,298,305,307} and confidence^{271,305-307,309} to provide CPR if needed. Those trained were also likely to share training with other family members and friends when provided with materials (eg, BLS training kits with a manikin).^{271,272,285,286,304,305,307,308}

Treatment Recommendations

We recommend BLS training for likely rescuers of populations at high-risk of out-ofhospital cardiac arrest (strong recommendation, low-to-moderate–certainty evidence).

We recommend health care professionals encourage and direct likely rescuers of populations at high risk of cardiac arrest to attend BLS training (good practice statement).

Justification and Evidence-to-Decision Framework Highlights

The complete evidence-to-decision table is provided in Appendix A.

In making this recommendation, the Education, Implementation, and Teams Task Force placed higher value on the improvements in competency in BLS skills, the improvements in confidence and willingness to perform BLS, the multiplier effect of trained individuals training others, the high proportion of OHCAs that occur in the home and the potential benefits of such patients receiving BLS from a family member or caregiver, the fact that BLS training doesn't increase anxiety in trainees,²⁶⁶ and that these groups are unlikely to undertake training on their own.²⁶⁶

Given these facts, we considered it important to recommend that healthcare professionals encourage and direct these groups to attend BLS training even though they may not take up training.²⁸¹ We also placed lesser value on the associated costs and the potential that performance of some skills may not be to guideline standard and may not be retained without refresher CPR training.

Task Force Knowledge Gaps

- The long-term impact of training on patient outcomes
- The best methods for training and retraining to achieve high attendance and skill retention
- Whether healthcare providers suggesting the need for BLS training, rather than providing training, influences likely rescuers to seek and obtain training

Patient Outcome and Resuscitation Team Members Attending Advanced Life Support Courses (EvUp/SysRev/Adolopment)

Rationale for Review

Attendance at an advanced life support course comes at a cost—both financial and in time—to participants and their institutions. It is, therefore, important to show whether such participation has a meaningful impact upon patient outcomes. In 2020, we recommended the provision of accredited adult advanced life support training for healthcare providers (weak recommendation, very low–certainty evidence). The purpose of this SysRev is to update the evidence for adult advanced life support training and to expand the search to participants of other advanced life support courses covering patients of all ages.

The review was registered at PROSPERO: CRD42021253673. The full text of this CoSTR is available on the ILCOR website.³¹⁴

Course types, titles, and abbreviations used in this CoSTR:

- Adult advanced life support courses: Advanced Life Support (ALS), Advanced Cardiovascular Life Support (ACLS)
- Pediatric advanced life support courses: Pediatric Advanced Life Support (PALS), European Paediatric Advanced Life Support (EPALS), European Paediatric Intermediate Life Support (EPILS)
- Neonatal resuscitation training (NRT): Newborn Resuscitation Programs (NRP), Neonatal Life Support (NLS), Advanced Resuscitation of the Newborn Infant (ARNI)
- Helping Babies Breathe (HBB) Course
- Advanced Trauma Life Support (ATLS[®]) Course
- European Trauma Course (ETC)

Population, Intervention, Comparator, Outcome, Study Design, and Time Frame

- **Population:** Patients of any age requiring IHCA resuscitation
- Intervention: Prior participation of 1 or more members of the resuscitation team in an accredited advanced life support course (eg, ALS, ACLS, PALS, EPILS, NRT [including NRP, HBB, NLS, ARNI])
- **Comparator:** No such participation
- **Outcome:** Critical: ROSC, survival to hospital discharge or to 30 days, survival to 1 year, and survival with favorable neurological outcome; NRT (in addition): stillbirth rate, neonatal and perinatal mortality
- Study design: RCTs, nonrandomized studies (non-RCTs, interrupted time series, controlled before-and-after studies, cohort studies, and case series where n ≥5), and reviews were

included. Unpublished reports (eg, trial protocols), commentary, editorials, studies looking at the impact of individual components of courses (eg, airway, drug therapy, defibrillation), studies relating to BLS and first aid courses, dedicated trauma courses (eg, ATLS[®], ETC), and studies relating to OHCA were excluded.

• **Time frame:** Publications from all years (except for ALS, which included studies after March 2018, as previous studies were included in another already published systematic review) and all languages were included if there was an English abstract. Search was conducted on October 18, 2021

Consensus on Science

This review identified 18 studies covering the adult ALS Course (n=1),³¹⁵ NRT courses (n=11),³¹⁶⁻³²⁶ and the HBB Course (n=6).³²⁷⁻³³² In addition, 2 review articles were identified, 1 of which covered NRT³³³ and the other covered HBB.³³⁴ Evidence was of very low certainty (downgraded for risk of bias and inconsistency).

Adult Advanced Life Support Courses (ALS, ACLS)

The 2020 CoSTR was based on an adolopment of a SysRev.³³⁵ This EvUp for that review included the newly identified study.³¹⁵ This retrospective descriptive study from India assessed the impact on patient outcomes of nursing staff attending an American Heart Association course. The study reported outcomes for ROSC and survival to hospital discharge. The updated results from the previous CoSTR with the data from this study were ROSC (odds ratio 1.66; 95% CI, 1.24–2.21) and survival to hospital discharge and to 30 days (odds ratio 2.48; 95% CI, 1.21–5.09). This supported the conclusions from the previous ILCOR CoSTR.

Neonatal Resuscitation Training

One SysRev was identified³³³ covering all NRT approaches. No additional studies were identified through our search. This SysRev satisfied the "A Measurement Tool to Assess Systematic Reviews-2" criteria for adolopment, as defined by the ILCOR Adolopment Process document.³³⁶ Data were extracted and analyzed for hospital-based studies only, and results are presented in Table 33. All included studies were of pre- or post-design and from low- to middle-resource settings. Despite clinical and statistical heterogeneity, all analyses showed a consistent treatment effect for this training.

Outcome	Studies, n	Participants, n	RR	95% CI
All stillbirths	9 ^{212,322,329,337-340} *	1 334 307	0.88	0.82-0.94
Fresh stillbirths	6 ^{212,322,328,329} *	231 455	0.71	0.54-0.93
1-day neonatal mortality	5 ^{212,328,341} *	216 373	0.58	0.38-0.90
7-day neonatal mortality	5 ^{328,338,341-343}	296 300	0.78	0.63-0.97
28-day mortality	6 ^{320,322,328,329,337,344}	1 090 594	0.89	0.65-1.22
Perinatal mortality	4 ^{328,337,338†}	1 178 446	0.78	0.70–0.87

Table 33. NRT Outcomes From Hospital-Only Studies

NRT indicates neonatal resuscitation training; and RR, relative risk.

*Data from 1 unpublished study included.

[†]Data from 2 unpublished studies included.

Helping Babies Breathe

One SysRev of the HBB Course was identified,³³⁴ which also met criteria for adolopment. All of the included studies were from low-resource areas. The review found moderate evidence for a decrease in intrapartum-related stillbirth and 1-day neonatal mortality rate after implementing the HBB training and resuscitation method. One additional study was identified in our search, which concluded that HBB may be effective in a local first-level referral hospital in Mali.³³⁰

Treatment Recommendations

We recommend the provision of accredited advanced life support training (ACLS, ALS) for healthcare providers who provide advanced life support care for adults (strong recommendation, very low–certainty evidence).

We recommend the provision of accredited courses in neonatal resuscitation training (NRT, NRP) and HBB for healthcare providers who provide advanced life support care for newborns and babies (strong recommendation, very low–certainty evidence).

We have made a discordant recommendation (strong recommendation despite very low– certainty evidence) because we have placed a very high value on an uncertain but potentially life-preserving benefit, and the intervention is not associated with prohibitive adverse effects.

Justification and Evidence-to-Decision Framework Highlights

The complete evidence-to-decision table is provided in Appendix A.

In making this recommendation, the Education, Implementation, and Teams Task Force recognizes that the evidence in support of this recommendation comes from studies providing very low–certainty evidence on a range of courses run in different resource settings around the world over a long period. Despite this, the studies show a consistent treatment effect for this training with potential for many lives saved. The provision of NRT and HBB training is feasible in low- and middle-resource settings.

Task Force Knowledge Gaps

- The trainee characteristics and training/recertification frequency required to sustain the existing effect on patient outcomes
- The impact of other advanced life support courses (eg, pediatric) on patient outcomes

- The impact of blended-learning approaches
- The impact of modifications necessitated by the COVID-19 pandemic

Blended Learning for Life Support Education (SysRev)

Rationale for Review

Blended learning is an educational approach that combines face-to-face and online approaches.³⁴⁵ Recently, the impact of the COVID-19 pandemic on the feasibility of face-to-face interactions and teaching has been profound, making the use of technology to facilitate learning a necessity rather than an option.³⁴⁶⁻³⁴⁹ The 2020 CoSTR strongly recommended "providing the option of eLearning as part of a blended-learning approach to reduce face-to-face training time in advanced life support courses (very low– to low-certainty evidence)."³⁵⁰ This SysRev is designed to evaluate the impact of blended learning on all accredited life support courses. The study was registered with PROSPERO on August 20, 2021 (registration number CRD42021274392).³⁵¹

Population, Intervention, Comparator, Outcome, Study Design, and Time Frame

- **Population:** Participants undertaking an accredited life support course (eg, BLS, advanced life support courses, ATLS[®])
- Intervention: Blended-learning approach
- **Comparator:** Non–blended learning approach (online or face-to-face only)
- **Outcome:** Critical: knowledge acquisition (end of course, 6 months, 1 year), skills acquisition (end of course, 6 months, 1 year), participant satisfaction (end of course), patient survival, and implementation outcomes (cost, time needed)
- Study design: RCTs, nonrandomized studies (non-RCTs, interrupted time series, controlled before-and-after studies, cohort studies, and case series where n ≥5), and manikin studies

were included. Unpublished reports (eg, trial protocols), commentary, editorial, and reviews were excluded.

• **Time frame:** Publications from all years from 2000 onward and all languages were included if there was an English abstract. Search was conducted on August 6, 2021.

Consensus on Science

Most studies used face-to-face only as the control group, with only 2 BLS studies having online learning only as a control group.^{352,353}

There was a mix of interventions in the BLS group, with some adding online content to standardized face-to-face courses,³⁵²⁻³⁵⁶ and some substituting didactic content with online content leaving an amended face-to-face element.³⁵⁷⁻³⁶³ In the advanced life support group, all except 1 study³⁶⁴ evaluated online learning as a substitute for didactic elements. The ATLS[®] study evaluated online learning as a substitute for didactic elements.³⁶⁵

Basic Life Support

A total of 14 studies were included, addressing both BLS knowledge and BLS skills after the intervention.^{352-363,366,367} Results were mixed, with some studies finding a benefit with blended learning, and some studies finding no difference. Only one study found a statistically significant benefit for knowledge³⁵⁹ and for skills³⁶⁰ with face-to-face only. For BLS knowledge and skills retention, there was no significant difference up to 12 months after intervention.

For the outcome of attitudes, there was evidence of positive attitudes to all forms of training.^{353,355,362,363}

For the outcome of costs, the single cost analysis study found a notable financial benefit for teaching BLS via a blended-learning approach.³⁶⁶

Adult Advanced Life Support

The review included 8 studies.^{364,368-374} For the outcome of advanced life support knowledge (postintervention), 2 studies found significantly higher scores in the blended-learning group,^{368,374} whilst the remainder of the studies found no significant difference between the groups.^{364,369,373} There was no significant difference between groups for 1 study at 7 months.³⁶⁹

For the outcome of advanced life support skills (postintervention), 1 pilot study³⁷³ found significantly higher scores in the control group; however, a subsequent study of the revised version of the same course found significantly higher scores in the blended-learning group.³⁷⁴ The remainder of the studies found no significant difference between the groups.^{364,368,369,371}

Attitudes were diverse: 3 studies found a preference for blended learning,^{364,368,371} and 2 studies found a preference for face-to-face learning.^{369,372}

Two studies found a notable financial benefit for teaching advanced life support via a blended-learning approach.^{370,373}

Advanced Trauma Life Support

One study found that a blended-learning approach involving the substitution of didactic elements with online learning for the American College of Surgeons' ATLS[®] Course was better than face-to-face, but only in terms of knowledge outcomes.³⁶⁵ Overall pass rates were better, but there was no specific description of the breakdown of skills performance as opposed to knowledge outcomes in determining the final result, so a conclusion about skills training cannot be made.

Treatment Recommendations

We recommend a blended learning as opposed to non-blended approach for life support training where resources and accessibility permit its implementation (strong recommendation, very low-certainty evidence).

Justification and Evidence-to-Decision Framework Highlights

The complete evidence-to-decision table is provided in Appendix A.

In making this recommendation, the Education, Implementation, and Teams Task Force considered that a blended learning approach is grounded in a strong framework from educational theory, and has been shown to result in similar or better educational outcomes for participants of life support training. A blended learning approach enables ongoing training in life support skills for those in remote locations, lower-resource settings, and in times of pandemic, but may not be feasible in areas where access to online learning is limited or unavailable. Blended learning enables consistent messaging about content, which can be particularly beneficial for pre-course preparation, and it reduces participant and stakeholder costs.

The task force agreed that non-blended learning approaches (ie, face-to-face only or online only) are an acceptable alternative where resources or accessibility do not permit the implementation of a blended learning approach. Most of the studies used face-to-face only as the control group, with very limited evidence for online only as the control group. Blended learning approaches decrease the duration of face-to-face training required, although time is still needed to complete the online component.

Task Force Knowledge Gaps

• The elements of instructional delivery that are associated with better educational outcomes

- Whether certain levels of blended learning (ie, how much, what exactly, when used) are more beneficial than others
- Whether there is a difference in outcomes between approaches where online learning is added to established face-to-face content or where it substitutes for elements of the face-to-face contact
- Whether blended learning life support education leads to better patient outcomes
- Whether certain subgroups of participants (eg, first time versus recertification) have better educational outcomes from a blended learning approach
- How blended learning compares with online-only learning

Faculty Development Approaches for Life Support Courses (ScopRev)

Rationale for Review

A cornerstone to improve survival after cardiac arrest is continuous education in resuscitation delivery for laypersons and healthcare professionals. To do so, regional resuscitation councils have implemented resuscitation courses and training programs for their instructors within their faculty development programs to teach standardized resuscitation for their accredited courses. This ScopRev was conducted to identify the types of available evidence on the topic of faculty development programs for life support courses and is summarized here. The full text of this ScopRev is available on the ILCOR website.³⁷⁵

Population, Intervention, Comparator, Outcome, Study Design, and Time Frame

• **Population:** Instructors of accredited life support courses, including BLS, PBLS, ALS, PALS, and NRP

- **Intervention:** Any faculty development approach to improve instructional competence in accredited life support courses
- **Comparator:** No such approach or any other faculty development approach
- Outcome:
 - Clinical outcomes of patients resuscitated by students of the instructors: Critical: favorable neurologic outcome, survival to discharge, short-term survival, ROSC, sustained ROSC, and survival to admission
 - Educational outcomes:
 - Critical: skill performance of students of the instructors in actual resuscitation.
 - Important: knowledge, instructional skills, and attitudes of instructors at the end of instructor training course; knowledge, instructional skills, and attitudes of instructors some period of time after the end of the instructor training course; confidence of instructors to teach students at the end of the instructor training course and some period of time after course completion; and knowledge, skill performance, attitudes, willingness, and confidence of students of the instructors immediately at the end of the provider course or some period of time after course completion
- Study design: RCTs and nonrandomized studies (non-RCTs, interrupted time series, controlled before-and-after studies, cohort studies, case-control studies), unpublished studies (eg, conference abstracts, trial protocols), letters, editorials, comments, case series, and case reports were eligible for inclusion. Interventions with nonaccredited life support courses, or life support training included as part of a curriculum in other medical educational courses, were excluded.

• **Time frame:** All years and all languages were included if there was an English abstract. Literature search updated to December 31, 2021.

Summary of Evidence

Of the initial search yield of 13 291 records, 20 studies,³⁷⁶⁻³⁹⁵ including 5 conference

abstracts, 379,385,389,390,395 1 short communication, 393 and 14 full-length articles, 376-378,380-384,386-

^{388,391,392,394} were included. Interventions were grouped into 4 categories, and studies are

summarized in Table 34.

- 1. Instructor qualification/training, $n=9^{379,382,383,386-388,390,391,394}$
- 2. Assessment tools, $n=3^{376,389,395}$
- 3. Teaching skills enhancement, n=3^{378,381,385}
- 4. Additional course for instructors, $n=5^{377,380,384,392,393}$

Category	Intervention	Results
1. Instructor qualification/trai	ning	
Internet-based AHA CIC ³⁸²	Comparing internet-based AHA	There was no difference in pretest
	CIC with traditional classroom-	and posttest practical scores.
	based AHA CIC	Candidates in the online group
		had significantly higher adjusted
		posttest scores.
Train-the-trainer	Instructor course with train-the-	Train-the-trainer programs may be
courses ^{379,383,386,390,391}	trainer model, sending the "trained	effective in improving
	trainers" to deliver further	resuscitation knowledge and skills
	resuscitation training	and are important for developing
		local expertise.
System-wide instructor training	1 2	A specific pediatric and neonatal
program ³⁸⁸	pediatric and neonatal CPR	CPR instructor course is an
	instructor courses certified by the	adequate method for sustainable
	Spanish Paediatric and Neonatal	training of health professionals to
	Resuscitation Group, held between	teach pediatric resuscitation.
	1999 and 2019	
Modified instructor course	New instructor course compared	There was improved confidence in
with lectures, instruction	with conventional training	teaching neonatal CPR when
practice, and self-developed		participating in the new course.
resuscitation scenarios ³⁹⁴		

Table 34. Interventions to Improve Instructional Competence

Category	Intervention	Results
Web-based questionnaire	Web-based survey with a 29-item	Several important factors for the
survey for instructors ³⁸⁷	Competence Importance	competence of instructors were
	Performance scale	identified.
2. Assessment tools		
Assessment for chest compression with real-time compression feedback ³⁷⁶	Real-time compression feedback	There were improved chest compression performance skills with real-time feedback, without comparable improvement in chest compression assessment skills in video review.
Assessment for chest compression with self- learning ³⁹⁵	Recorded chest compressions by motion-capture camera	There was improved ability of novice instructors to assess chest compressions after self-training, but it does not equal that of experienced instructors.
Delivery of BLS training using fully-body sensor-equipped manikins ³⁸⁹	Use of sensor-equipped manikins for accredited instructors asked to deliver BLS training	Instructors felt the manikins were useful and felt confident when delivering the course, and that may be beneficial to a trainer's perception.
3. Teaching skills enhancemer	nt	I
Different feedback method ³⁷⁸	Learning conversation structured methods of feedback delivery in BLS training, compared with the sandwich technique (ie, positive feedback—negative feedback— positive feedback)	Using learning conversation structured methods by instructors was preferred over using the sandwich technique by instructors, and may give instructors more confidence.
Using standardized script by	Use of scripted debriefing by novice	The use of a standardized script to
novice instructors to facilitate team debriefing ³⁸¹	instructors and/or simulator physical realism affects knowledge and performance in simulated cardiopulmonary arrests.	debrief by novice instructors improved students' knowledge acquisition and team leader behavioral performance during subsequent simulated cardiopulmonary arrests.
Tape recording and a later critical viewing of a lecture ³⁸⁵	Record the lecture provided by BLS/AED or ALS instructor candidates with a tape, a later video review, and oral self-assessment.	The opinion of all participants was positive when they were asked about comparing their subjective impressions with the objective viewing.
4. Additional course for instru		
Educational program to teach ACLS instructors to evaluate team leader performance ³⁸⁴	Educational program to review commonly observed errors and to identify critical errors	Trained instructors identified more critical errors and gave more correct grade assignments.
ATP ^{392,393}	ATP as additional training, focusing on decision-making in equivocal	Trained instructors were less prone to incorrectly giving failing
	situations	scores to candidates. ³⁹³ Instructors

Category	Intervention	Results
		with additional training were
		significantly more confident at
		assessing. ³⁹²
Neonatal resuscitation	2-day neonatal resuscitation	There were significant
workshop ³⁷⁷	workshop	improvements in participants'
		perceptions of their teaching
		ability.
Clinical teacher training	2-day BLS and emergency medicine	Students taught by untrained
course/workshop (enhance	teacher training program	teachers performed better in some
teaching skills and methods) ³⁸⁰		domains. Teaching quality was
		rated significantly better by
		students of untrained teachers.

ACLS, advanced cardiovascular life support; AED, automated external defibrillator; AHA, American Heart Association; ALS, advanced life support; ATP, assessment training program; BLS, basic life support; CIC, core instructor course; and CPR, cardiopulmonary resuscitation.

Task Force Insights

This ScopRev on faculty development approaches to improve instructional competence in life support courses was summarized in 4 themes: instructor qualification/training, assessment tools, teaching skills enhancement, and additional courses for instructors. Many studies only described implementations of regional instructor programs but did not report outcomes and were excluded. Some organizations used their specific train-the-trainer courses, and it seems that these models may be effective in these specific contexts, but different systems make comparisons nearly impossible.

Instructors' assessment of chest compressions was not as good as expected; therefore, feedback devices and training programs sharpening their assessment skills were suggested.^{376,384,392,393,395} Of the articles with additional training programs that were included, 4 out of 5 had a positive effect on instructors' teaching competencies and evaluation ability.^{377,384,392,393} However, new teaching strategies may not have the expected effects, which emphasizes the need for rigorous evaluation of any changes to training practices.³⁸⁰

Specific debriefing and feedback methods were suggested for instructors teaching life support courses, which may increase instructors' confidence.³⁷⁸ Most resuscitation training

studies analyzed the learning outcomes of course participants but rarely assessed instructors. Future research on faculty development of resuscitation instructors should include assessment of core instructor competencies as an outcome of interest.

We did not identify any recertification program for instructors, although continuous lifelong learning to retain the teaching skills is crucial for instructors. One reason for suboptimal instructor performance might be lack of effective retraining or recertification programs.

Treatment Recommendations

There was no treatment recommendation on faculty development programs for resuscitation course instructors previously. This ScopRev has not identified sufficient evidence to support a new SysRev, and no treatment recommendation was generated.

Based on this ScopRev and expert opinion from the task force members, faculty development for resuscitation course instructors remains an important element contributing to improved teaching and the learners' outcomes in accredited life support courses. However, no clear picture of the most appropriate and most effective faculty development programs could be identified from the studies reviewed. Different approaches need to consider the local training environment and resource availability, as well as instructors' needs to maximize learning outcomes of such programs. The best ways to maintain and assess instructor competency whilst concurrently maximizing cost-effectiveness needs to be established.

The task force encourages resuscitation councils to implement faculty development programs for their teaching staff of their accredited resuscitation courses.

Task Force Knowledge Gaps

- The most appropriate life support instructor training strategy
- The best methods for objective measurement of core competence of instructors

- Strategies to build up an effective recertification or retraining program for life support course instructors
- Which feedback method or debriefing strategy is effective and how to teach instructors to use a debriefing method successfully in life support instructor training
- Whether continuous assessment and feedback to instructors from others, such as senior instructors or course directors, improves instructor competence and learning outcomes for the course participants
- The effect on patient outcome of instructor training

Topics Reviewed by EvUps

In Table 35, EvUps are listed with the PICO number, existing treatment recommendation, number of relevant studies identified, key findings, and information about whether a SysRev was deemed worthwhile. Complete EvUps can be found in Appendix C.

Topic/PICO	Year(s) last updated	Existing treatment recommendation	RCTs since last review, n	Observational studies since last review, n	Key findings	Sufficient data to warrant SysRev?
Willingness to provide CPR (EIT 626)	2020 ScopRev 2010 CoSTR	To increase willingness to perform CPR, laypeople should receive training in CPR. This training should include the recognition of gasping or abnormal breathing as a sign of cardiac arrest when other signs of life are absent. Laypeople should be trained to start resuscitation with chest compressions in adult and pediatric victims. If unwilling or unable to perform ventilation, rescuers should be instructed to continue compression-only CPR.	0	12 (9 are related to the COVID-19 pandemic)	Three observational studies identified factors associated with willingness to perform CPR described earlier. Six studies during the COVID-19 pandemic period found that bystander CPR rate decreased, and 5 studies showed a significant decrease in the rate of using bystander AED or PAD.	No

Table 35.	EIT	Topics	Reviewed	bv	EvUps	5
				~ 5		-

Topic/PICO	Year(s) last updated	Existing treatment recommendation	RCTs since last review, n	Observational studies since last review, n	Key findings	Sufficient data to warrant SysRev?
		EMS dispatchers should provide CPR instructions to callers who report cardiac arrest. When providing CPR instructions, EMS dispatchers should include recognition of gasping and abnormal breathing.			5	
Team and leadership training (EIT 631)	2020 CoSTR	We suggest that specific team and leadership training be included as part of ALS training for healthcare providers (weak recommendation, very low–certainty evidence).	1	8	Published new evidence associates teamwork or leader performance with clinical performance, as measured by surrogate patient outcomes (adherence to resuscitation and other clinical practice guidelines, avoidance of errors, time to definitive therapies). No new evidence demonstrates an effect of team training on patient outcomes and survival.	No
Rapid response systems in adults (EIT 638)	2020 CoSTR	We suggest that hospitals consider the introduction of a rapid response system (rapid response team/medical emergency team) to reduce the incidence of IHCA and in- hospital mortality (weak recommendation, low- quality evidence).	0	11	No new randomized studies were found. The findings from 11 nonrandomized studies were mixed, and the majority suffer from high risk of bias. Two studies found no effect of rapid response teams on patient outcome, whereas the other observational studies showed positive effect, mostly in reduction of cardiac arrest or hospital mortality.	No
Community initiatives to promote BLS implementation (EIT 641)	2020 ScopRev 2015 CoSTR	We recommend implementation of resuscitation guidelines within organizations that provide care for patients in cardiac arrest in any setting (strong recommendation, very - low-quality evidence).	0	2	The 2 new observational studies confirm improvements from strategies driven by community initiatives promoting BLS described in the last ScopRev.	No
Debriefing of resuscitation performance	2020 EIT CoSTR;	EIT 645: We suggest data-driven, performance-focused debriefing of rescuers after	0	3	We did not find substantial new evidence supporting debriefing in adults. One observational study found	No

Topic/PICO	Year(s) last updated	Existing treatment recommendation	RCTs since last review, n	Observational studies since last review, n	Key findings	Sufficient data to warrant SysRev?
(EIT 645 and NLS 1562)	NLS ScopRev	IHCA for both adults and children (weak recommendation, very low-certainty evidence). We suggest data-driven, performance-focused debriefing of rescuers after OHCA in both adults and children (weak recommendation, very low-certainty evidence). NLS 1562: There was no previous treatment recommendation on the topic. This ScopRev did not identify sufficient evidence to prompt a SysRev.			short-term improvements with debriefing in neonates. Several knowledge gaps were found and described in the EvUp (eg, short- and long-term outcomes, debriefing facilitator training, emotional and psychological side effects of debriefing).	
Spaced versus massed learning (EIT 1601)	2020 CoSTR	For learners undertaking resuscitation courses, we suggest that spaced learning (training or retraining distributed over time) may be used instead of massed learning (training provided at one single time point) (weak recommendation, very low certainty of evidence).	3	5	The n=3 new randomized trials showed a tendency toward spaced learning but no clear picture on long- term outcome. Included nonrandomized studies were highly heterogeneous in outcome measures, type of resuscitation courses, and participants but overall showed a positive effect of spaced learning.	No

AED indicates automated external defibrillator; ALS, advanced life support; BLS, basic life support; CoSTR, International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations; CPR, cardiopulmonary resuscitation; EIT, education, implementation, and teams; EMS, emergency medical services; EvUp, evidence update; IHCA, in-hospital cardiac arrest; ILCOR, International Liaison Committee on Resuscitation; NLS, neonatal life support; OHCA, out-of-hospital cardiac arrest; PAD, public-access defibrillation; PICO, population, intervention, comparator, outcome; RCT, randomized controlled trial; ScopRev, scoping review; and SysRev, systematic review.

FIRST AID TASK FORCE

The Recovery Position for Maintenance of Adequate Ventilation and the Prevention of Cardiac Arrest (SysRev)

Rationale for Review

This topic was prioritized by the First Aid Task Force after a scoping review using a reworded PICOST question in 2020. The original PICOST wording from 2015 sought to compare a lateral, side-lying recovery position with a supine position in adults who are breathing and unresponsive in an out-of-hospital setting. The revised PICOST wording now clarifies the population of interest as adults and children with a reduced level of responsiveness of nontraumatic etiology and who do not require resuscitative interventions. The SysRev was undertaken with involvement of content experts from the First Aid and Basic Life Support Task Forces (PROSPERO 2021 CRD42021248358). The full text of this CoSTR can be found online.³⁹⁶

Population, Intervention, Comparator, Outcome, Study Design, and Time Frame

- **Population:** Adults and children in the first aid setting who have a reduced level of responsiveness of nontraumatic etiology and do not require resuscitative interventions
- **Intervention:** Specific positioning (recovery positioning [ie, various semi-prone, lateral recumbent, side-lying, or three-quarters prone positions of the body])
- Comparator: Supine or other position
- **Outcome:** *Critical*—survival, incidence of cardiac arrest, delayed detection of apnea and cardiac arrest. *Important*—need for airway management, incidence of aspiration, hypoxia,

likelihood of cervical spine injury, complications (venous occlusion, arterial insufficiency, arm discomfort/pain, discomfort/pain, aspiration pneumonia)

- **Study design:** RCTs and nonrandomized studies (non-RCTs, interrupted time series, controlled before-and-after studies, cohort studies) and case series were included. Reports including a minimum of 5 cases were eligible for inclusion. Animal, healthy volunteer, and cadaver research were excluded. Unpublished studies (eg, conference abstracts, trial protocols) and editorials were excluded, although case reports published in letter form were included. Scoping reviews and SysRevs were included for discussion and to assure no primary papers were missed, but data were not extracted from these reviews.
- **Time frame:** All years and all languages were included if there was an English abstract. Literature search updated to November 17, 2021.

Consensus on Science

An updated search performed in 2021 identified 3 prospective observational studies enrolling 450 adults and 553 children³⁹⁷⁻³⁹⁹ and 4 case series with a total of 251 patients (under 10% were children).⁴⁰⁰⁻⁴⁰³ No comparative studies were identified evaluating critical outcomes, including survival, incidence of cardiac arrest, or delayed detection of apnea and cardiac arrest. Meta-analysis was not possible because of the lack of comparative studies, critical risk of bias, and high degree of heterogeneity.

A 1999 observational study of 205 acutely poisoned patients reported on those with suspected aspiration pneumonia and the body position they were found in.³⁹⁷ Prone and semi-recumbent positions were associated with a decreased rate of suspected aspiration pneumonia (P<0.05). No significant difference was found in the incidence of pulmonary infiltrates between left lateral decubitus, right lateral decubitus, and supine body positions.

A 2016 observational study of 553 pediatric emergency department patients with loss of consciousness reported on the use of the recovery position by caregivers in 145 of 553 patients (26.2%). Use of the recovery position was associated with a decreased admission rate (adjusted odds ratio, 0.28 [95% CI, 0.17–0.48]; P<0.0001).³⁹⁸

A 2020 prospective observational study of 200 people with OHCA and receiving bystander intervention reported that 64 people (32%) were found by emergency medical services in a supine position suitable for providing chest compressions.³⁹⁹ Another 37 patients (18.5%) were found in a recovery position. No significant difference in favorable functional outcome was observed between patients in the recovery position compared with those placed in a position suitable for chest compression.

Of the 4 case series identified, 3 series with a total of 244 patients described the body position of persons with sudden unexpected death in epilepsy.⁴⁰¹⁻⁴⁰³ All 3 case series reported a prone position in most patients with sudden death in epilepsy. A fourth case series reported 7 cases of OHCA in which the patients were judged by bystanders to be unresponsive but breathing normally and placed into a recovery position. The authors noted that subsequent loss of breathing was not detected and CPR was not started.⁴⁰⁰

Treatment Recommendations

When providing first aid to a person with a decreased level of responsiveness of nontraumatic etiology and who does not require immediate resuscitative interventions, we suggest the use of the recovery position (weak recommendation, very low–certainty evidence).

When the recovery position is used, monitoring should continue for signs of airway occlusion, inadequate or agonal breathing, and unresponsiveness (good practice statement).

If body position, including the recovery position, is a factor impairing the first aid provider's ability to determine the presence or absence of signs of life, the person should be immediately positioned supine and reassessed (good practice statement).

Persons found in positions associated with aspiration and positional asphyxia such as facedown, prone, or in neck and torso flexion positions should be repositioned supine for reassessment (good practice statement).

Technical Remarks

Resuscitative interventions may include opening an airway, rescue breathing, chest compressions, and the application of an automated external defibrillator.

Various recovery positions have been described, and there remains little evidence to suggest an optimal position. The recommended recovery position (lateral recumbent positioning with arm nearest the first aid provider at a right angle to the body and elbow bent with palm up and far knee flexed), remains unchanged from the 2015 CoSTR.^{404,405}

Justification and Evidence-to-Decision Framework Highlights

Please see Appendix A for the complete evidence-to-decision table.

Although the evidence to support a treatment recommendation was limited and of very low certainty, the first aid task force recognizes that the opioid crisis in North America has led to many individuals requiring first aid and use of the recovery position. The task force discussed at length the potential benefits from use of a recovery position versus the risks of harm.

One case series⁴⁰⁰ described potential missed OHCA in persons placed into a recovery position. Other evidence was identified that did not meet inclusion criteria for this review in which healthy volunteers used breath holding to simulate apnea. It was suggested that placing persons in the recovery position may impair the detection of cardiac arrest and that supine

Wyckoff 143

positioning with a head tilt–chin lift should be adopted instead.^{406,407} The first aid task force noted that it remains unknown how well the head tilt–chin lift was performed in the study or if it can be maintained for prolonged periods by first aid providers. Moreover, the observation of the subject may be more complete when they are supine, but a patent airway and unobstructed breathing may be easier to obtain in the recovery position. The potential difficulty of training lay providers to be able to accurately identify *normal* breathing and responsiveness in real-life settings was also considered.

The task forces agreed that, in situations when a sole first aid responder is unable to remain with a casualty and monitor their responsiveness and breathing, the use of a recovery position is appropriate. Likewise, a recovery position would be useful in the setting of a sole responder caring for a person who is in a supine position and requires ongoing airway maintenance that will prevent the responder from calling for help or providing other immediate first aid, such as administering naloxone for suspected opioid overdose. The potential impact of body habitus on airway patency and ventilation in supine versus recovery positions was discussed. For example, a supine position in an obese person with diminished level of responsiveness may be associated with greater risk of airway obstruction and inadequate ventilation. The limited included evidence showing an association between use of a recovery position and a decreased admission rate further supports the use of a recovery position in children with a decreased level of responsiveness, although a semi-recumbent position or prone position was associated with lower rates of suspected aspiration pneumonia. Finally, we acknowledge that positional asphyxia can occur in a person with a diminished level of responsiveness in multiple positions. This may include when the torso is lateral and the neck flexed or rotated down, when a seated person falls/flexes forward at the waist (face down), and

Wyckoff 144

when the face is occluded by soft bedding or material. Case series and an analysis of deaths in patients with epilepsy who are lying in a prone position support the good practice statement to reposition persons found face down, prone, or in a flexed position to a supine position for reassessment.

On balance, the task forces recommend the use of a recovery position as having the potential to benefit most individuals who have a decreased level of responsiveness in the first aid setting. However, because a person's condition can deteriorate and possibly progress to cardiac arrest after being placed into a recovery position, the task forces introduced 2 new good practice statements, emphasizing the importance of careful monitoring and the need to change the position of the patient if assessment is impaired. This need for continuous or regular monitoring of respiratory status and responsiveness while someone is in the recovery position should be included in education and training courses.

Task Force Knowledge Gaps

- The role of positioning in assessment of patient breathing and responsiveness, as well as the ability to monitor a person for deterioration
- A study in which emergency call-takers randomize callers to receive instructions to place individuals with nontraumatic decreased level of responsiveness in either the recovery position or the supine position with assessment of clinical outcomes such as ability to monitor airway, breathing, and responsiveness
- The best position for assessing and maintaining airway patency relative to individual characteristics such as obesity or a history of obstructive sleep apnea, opioid use disorder, or seizure disorder

• How to ensure adequacy of the training of first aid and basic life support responders in the assessment of breathing and responsiveness so they can accurately identify normal breathing and responsiveness

Topics Reviewed by Evidence Updates

The topics reviewed by evidence updates (EvUps) are summarized in Table 36, with the PICO number, existing treatment recommendation, number of relevant studies identified, key findings, and whether a SysRev was deemed worthwhile. Complete EvUps can be found in Appendix C.

Topic/PICO	Year last updated	Existing treatment recommendation	RCTs since last review, n	Observationa l studies since last review, n	Key findings	Sufficient data to warrant SysRev?
Oral dilution for caustic substance ingestion (FA 202)	2010 CoSTR	Administration of a diluent in first aid may be considered if a caustic substance has been ingested, if advised to do so by a healthcare provider. (weak recommendation, very low–certainty evidence	1	0	Animal study of alkali injury of esophagus; irrigation with kefir and distilled water compared with distilled water alone; no difference in histopathological outcomes at 7 days	No
Recognition of anaphylaxis (FA 503)	2020 ScopRev; 2010 CoSTR	First aid providers should not be expected to recognize the signs and symptoms of anaphylaxis without repeated episodes of training and encounters with victims of anaphylaxis.	0	8	Survey studies focused on training in the use of epinephrine autoinjectors and recognition of anaphylaxis and reported on improved confidence in recognizing anaphylaxis and administering	No

Table 36. Topics Reviewed by EvUps

Topic/PICO	Year last updated	Existing treatment recommendation	RCTs since last review, n	Observationa l studies since last review, n		Sufficient data to warrant SysRev?
					epinephrine or on reasons for hesitation/non- use of epinephrine autoinjectors.	
Compression wraps for acute closed ankle joint injury (FA 511)	2020 CoSTR	We suggest either application of a compression bandage or no application of a compression bandage for adults with an acute closed ankle joint injury (weak recommendation, very low–certainty evidence). Due to a lack of identified evidence, we are unable to recommend for or against use of a compression bandage for closed joint injuries besides the ankle.	0	0	8	No
Open chest wound dressings (FA 525)	2015 CoSTR	We suggest against the application of an occlusive dressing or device by first aid providers to individuals with an open chest wound (weak recommendation, very low-quality evidence).		0	3 animal studies of vented chest seals identified but excluded	No
Bronchodilators for acute asthma exacerbation (FA 534)	2015 CoSTR	When an individual with asthma is experiencing difficulty breathing, we suggest that trained first aid providers assist the individual with administration of a bronchodilator (weak recommendation, very low-quality evidence).	0	0	One review of SysRevs concluded that, among children with asthma, exacerbations treated in the emergency department, short-acting β- agonists	No

Topic/PICO	Year last updated	Existing treatment recommendation	RCTs since last review, n	Observationa l studies since last review, n	Key findings	Sufficient data to warrant SysRev?
					delivered by metered-dose inhaler decrease hospital admission in younger children and emergency department	
					length of stay in older children.	
Optimal duration of cooling of burns with water (FA 770)	2021 CoSTR	We recommend the immediate active cooling of thermal burns using running water as a first aid intervention for adults and children (strong recommendation, very low–certainty evidence). Because no difference in outcomes could be demonstrated with the different cooling durations studied, a specific duration of cooling cannot be recommended. Young children with thermal burns that are being actively cooled with running water should be monitored for signs and symptoms of excessive body cooling (good		0		No
Preventive	2019	practice statement). We recommend the	0	0		No
interventive for presyncope (FA 798)	CoSTR	we recommend the use of any type of physical counter- pressure maneuver by individuals with acute symptoms of presyncope due to vasovagal or orthostatic causes in the first aid setting				110

Topic/PICO	Year last updated	Existing treatment recommendation	RCTs since last review, n	Observationa l studies since last review, n	Key findings	Sufficient data to warrant SysRev?
		(strong recommendation, low- and very low-certainty evidence). We suggest that lower body physical counter- pressure maneuvers are preferable to upper body and abdominal physical counter- pressure maneuvers (weak recommendation, very low-certainty evidence).		6	34	
Single-stage scoring systems for concussion (FA 799)	2020 ScopRev 2015 CoSTR	No recommendation. We acknowledge the role that a simple, validated, single-stage concussion scoring system could play in the first aid provider's recognition and referral of victims of suspected head injury. However, review of the available literature shows no evidence regarding the application of such scoring systems by the first aid provider. 2021 best practice statement:		0	A best practice statement was added in 2021 as shown.	No
		It is critically important that concussion is recognized and managed appropriately. In the absence of a validated, simple, single-stage concussion scoring system, the first aid assessment for a person with a possible concussion should be				

Topic/PICO	Year last updated	Existing treatment recommendation	RCTs since last review, n	Observationa l studies since last review, n		Sufficient data to warrant SysRev?
		based upon the typical signs and symptoms of				
		concussion.				
Cooling techniques for exertional	2020 CoSTR	For adults with exertional hyperthermia or	0	2	2 SysRevs identified, no change in	No
hyperthermia and heatstroke		exertional heat stroke, we recommend			treatment recommendation	
(FA 1545)		immediate active cooling using whole		(s.	
		body (neck down) water immersion techniques (1°C–26°C		C		
		[33.8°F–78.8°F) until a core body temperature				
		of less than 39°C (102.2°F) is reached				
		(weak recommendation, very				
		low-certainty evidence).				
		We recommend that				
		when water immersion				
		is not available, any				
		other active cooling				
		technique be initiated				
		(weak				
		recommendation, very				
		low-certainty evidence).				
		We recommend				
		immediate cooling				
		using any active or				
		passive technique				
		available that provides the most rapid rate of				
		cooling (weak				
		recommendation, very				
		low-certainty				
		evidence).				
		For adults with				
		nonexertional heat				
		stroke, we cannot				
		make a				
		recommendation for or				
		against any specific				
		cooling technique				

Topic/PICO	Year last updated	Existing treatment recommendation	RCTs since last review, n	Observationa l studies since last review, n	Key findings	Sufficient data to warrant SysRev?
		compared with an alternative cooling technique (no recommendation, very low-certainty evidence). For children with exertional or nonexertional heat stroke, we cannot make a recommendation for or against any specific cooling technique compared with an alternative cooling technique (no recommendation, very low-certainty		C	8	
First aid use of supplemental oxygen for acute stroke (FA 1549)	2020 CoSTR	evidence). For adults with suspected acute stroke, we suggest against the routine use of supplemental oxygen in the first aid setting compared with no use of supplemental oxygen (weak recommendation, low- to moderate-certainty evidence).	0	0		No
Methods of glucose administration for hypoglycemia in the first aid setting (FA 1585)	2018 CoSTR	We recommend the use of oral glucose (swallowed) for individuals with suspected hypoglycemia who are conscious and able to swallow (strong recommendation, very low–certainty evidence). We suggest against buccal glucose administration compared with oral	0	0		No

Topic/PICO	Year last updated	Existing treatment recommendation	RCTs since last review, n	Observationa l studies since last review, n	Key findings	Sufficient data to warrant SysRev?
		glucose administration for individuals with suspected hypoglycemia who are conscious and able to swallow (weak recommendation, very low-certainty evidence). If oral glucose (eg, tablet) is not immediately available, we suggest a combined oral + buccal glucose (eg, glucose gel) administration for individuals with suspected hypoglycemia who are conscious and able to swallow (weak recommendation, very low-certainty evidence). We suggest the use of sublingual glucose administration for suspected hypoglycemia for children who may be uncooperative with the oral (swallowed) glucose administration route (weak recommendation, very low-certainty				
Pediatric tourniquet types for life-	2020 CoSTR	a manufactured windlass tourniquet for	0	0		No
threatening extremity bleeding (new)		the management of life-threatening extremity bleeding in children (weak recommendation, very low-certainty evidence).				

Topic/PICO	Year last updated	Existing treatment recommendation	RCTs since last review, n	Observationa l studies since last review, n	Key findings	Sufficient data to warrant SysRev?
		We are unable to recommend for or against the use of other tourniquet types in children because of lack of evidence. For infants and children with extremities that are too small to allow the snug application of a tourniquet before activating the circumferential tightening mechanism, we recommend the use of direct manual pressure with or without the application of a hemostatic trauma		6	S S	
		dressing (good practice statement).				

EvUp indicates evidence update; FA, first aid; PICO, population, intervention, comparator, outcome; RCT, randomized controlled trial; ScopRev, scoping review; and SysRev, systematic review.

ACKNOWLEDGMENTS

The authors thank the following individuals for their contributions: John E. Billi, MD;

Eddy Lang, MDCM, CCFP(EM), CSPQ; Jenny Ring; and Veronica Zamora.

COLLABORATORS

Madeline C. Burdick, MD; Susie Cartledge, BN(Hons), PhD; Jennifer A. Dawson, RN,

PhD; Moustafa M. Elgohary, MBChB; Hege L. Ersdal, MD, PhD; Emer Finan, MBBCh, Med;

Hilde I. Flaatten; Gustavo E. Flores, MD, NRP; Janene Fuerch, MD; Callum Gately, MBChB;

Mark Goh SL, MBBS; Louis P. Halamek, MD; Anthony J Handley, MD, FRCP; Tetsuo

Hatanaka, MD, PhD; Amber Hoover, MSN, RN; Mohmoud Issa, MD; Samantha Johnson, MA;

Wyckoff 153

C. Omar Kamlin, MBBS, DMedSci; Ying-Chih Ko, MD; Amy Kule, MD; Tina A. Leone, MD;
Ella MacKenzie, BSc; Finlay Macneil, MB, BS; William Montgomery, MD; Domhnall
O'Dochartaigh MSc RN; Shinchiro Ohshimo MD, PhD; Francesco Stefano Palazzo, MBBS,
BSc; Christopher Picard, CD, BSN, RN; Bin Huey Quek, MMed (Paeds), MRCP (Paeds) ; James
Raitt, MbChB(Hons); Andrea Scapigliati, MD; Birju A. Shah, MD, MPH, MBA; Craig Stewart,
BSc, BMBS, MRCPCH; Marya L. Strand, MD, MS; Edgardo Szyld, MD, MSc; Marta Thio MD,
PhD; Alexis A. Topjian, MD, MSCE; Enrique Udaeta, MD; Christian Vaillancourt, MD, MSc;
Wolfgang A. Wetsch, MD; Jane Wigginton, MD, MSCS; Nicole K. Yamada MD, MS; Sarah
Yao HW, MBBS; Drieda Zace, PhD; Carolyn M. Zelop, MD.

Wyckoff 154

REFERENCES

 International Liaison Committee on Resuscitation. Consensus on Science With Treatment Recommendations (CoSTR) home page. <u>https://www.ilcor.org/home</u>. Accessed February 14, 2022.

2. Ristagno G, Nishiyama C, Ikeyama T, Bray J, Smyth M, Kudenchuck P, Johnson N, Masterson S, Nehme Z, Norii T, Perkins GD, Morley PT, Olasveengen TM; on behalf of the International Liaison Committee on Resuscitation Basic Life Support Task Force. Passive ventilation: BLS 352. 2022. <u>https://costr.ilcor.org/document/passive-ventilation-bls-352</u>. Updated January 31, 2022. Accessed February 14, 2022.

3. Saïssy JM, Boussignac G, Cheptel E, Rouvin B, Fontaine D, Bargues L, Levecque JP, Michel A, Brochard L. Efficacy of continuous insufflation of oxygen combined with active cardiac compression-decompression during out-of-hospital cardiorespiratory arrest. *Anesthesiology*. 2000;92:1523-1530. doi: 10.1097/00000542-200006000-00007

 Bertrand C, Hemery F, Carli P, Goldstein P, Espesson C, Rüttimann M, Macher JM, Raffy B, Fuster P, Dolveck F, Rozenberg A, Lecarpentier E, Duvaldestin P, Saissy JM, Boussignac G, Brochard L. Constant flow insufflation of oxygen as the sole mode of ventilation during out-of-hospital cardiac arrest. *Intensive Care Med*. 2006;32:843-851. doi: 10.1007/s00134-006-0137-2

5. Bobrow BJ, Ewy GA, Clark L, Chikani V, Berg RA, Sanders AB, Vadeboncoeur TF, Hilwig RW, Kern KB. Passive oxygen insufflation is superior to bag-valve-mask ventilation for witnessed ventricular fibrillation out-of-hospital cardiac arrest. *Ann Emerg Med.* 2009;54:656-662.e651. doi: 10.1016/j.annemergmed.2009.06.011 6. Fuest K, Dorfhuber F, Lorenz M, von Dincklage F, Mörgeli R, Friedrich Kuhn K, Jungwirth B, Kanz KG, Blobner M, Schaller SJ. Comparison of volume-controlled, pressurecontrolled, and chest compression-induced ventilation during cardiopulmonary resuscitation with an automated mechanical chest compression device: a randomized clinical pilot study. *Resuscitation.* 2021; doi: 10.1016/j.resuscitation.2021.07.010

 Olasveengen TM, Semeraro F, Bray J, Smyth M, Vaillancourt C, Kudenchuk P, Masterson S, Johnson N, Norii T, Nehme Z, Ristagno G, Perkins GD, Morley PT; on behalf of the International Liaison Committee on Resuscitation Basic Life Support Task Force.
 Minimizing pauses: systematic review. 2022. <u>https://costr.ilcor.org/document/bls-358-</u> <u>minimizing-pauses</u>. Updated January 24, 2022. Accessed February 14, 2022.

8. Jost D, Degrange H, Verret C, Hersan O, Banville IL, Chapman FW, Lank P, Petit JL, Fuilla C, Migliani R, Carpentier JP. DEFI 2005: a randomized controlled trial of the effect of automated external defibrillator cardiopulmonary resuscitation protocol on outcome from out-ofhospital cardiac arrest. *Circulation*. 2010;121:1614-1622. doi:

10.1161/circulationaha.109.878389

 Beesems SG, Berdowski J, Hulleman M, Blom MT, Tijssen JG, Koster RW. Minimizing pre- and post-shock pauses during the use of an automatic external defibrillator by two different voice prompt protocols. A randomized controlled trial of a bundle of measures. *Resuscitation*.
 2016;106:1-6. doi: 10.1016/j.resuscitation.2016.06.009

Nichol G, Leroux B, Wang H, Callaway CW, Sopko G, Weisfeldt M, Stiell I, Morrison
 LJ, Aufderheide TP, Cheskes S, Christenson J, Kudenchuk P, Vaillancourt C, Rea TD, Idris AH,
 Colella R, Isaacs M, Straight R, Stephens S, Richardson J, Condle J, Schmicker RH, Egan D,

May S, Ornato JP. Trial of Continuous or Interrupted Chest Compressions during CPR. *N Engl J Med.* 2015;373:2203-2214. doi: 10.1056/NEJMoa1509139

 Bleijenberg E, Koster RW, de Vries H, Beesems SG. The impact of post-resuscitation feedback for paramedics on the quality of cardiopulmonary resuscitation. *Resuscitation*. 2017;110:1-5. doi: 10.1016/j.resuscitation.2016.08.034

12. Grunau B, Kawano T, Dick W, Straight R, Connolly H, Schlamp R, Scheuermeyer FX, Fordyce CB, Barbic D, Tallon J, Christenson J. Trends in care processes and survival following prehospital resuscitation improvement initiatives for out-of-hospital cardiac arrest in British Columbia, 2006-2016. *Resuscitation*. 2018;125:118-125. doi:

https://dx.doi.org/10.1016/j.resuscitation.2018.01.049

13. Hostler D, Rittenberger JC, Roth R, Callaway CW. Increased chest compression to ventilation ratio improves delivery of CPR. *Resuscitation*. 2007;74:446-452. doi:

10.1016/j.resuscitation.2007.01.022

14. Lakomek F, Lukas RP, Brinkrolf P, Mennewisch A, Steinsiek N, Gutendorf P, Sudowe H, Heller M, Kwiecien R, Zarbock A, Bohn A. Real-time feedback improves chest compression quality in out-of-hospital cardiac arrest: A prospective cohort study. *PLoS ONE [Electronic Resource]*. 2020;15:e0229431. doi: https://dx.doi.org/10.1371/journal.pone.0229431

 Lyon RM, Clarke S, Milligan D, Clegg GR. Resuscitation feedback and targeted education improves quality of pre-hospital resuscitation in Scotland. *Resuscitation*. 2012;83:70-75. doi: 10.1016/j.resuscitation.2011.07.016

 Olasveengen TM, Lund-Kordahl I, Steen PA, Sunde K. Out-of hospital advanced life support with or without a physician: effects on quality of CPR and outcome. *Resuscitation*.
 2009;80:1248-1252. doi: 10.1016/j.resuscitation.2009.07.018 17. Christenson J, Andrusiek D, Everson-Stewart S, Kudenchuk P, Hostler D, Powell J,
Callaway CW, Bishop D, Vaillancourt C, Davis D, Aufderheide TP, Idris A, Stouffer JA, Stiell I,
Berg R. Chest compression fraction determines survival in patients with out-of-hospital
ventricular fibrillation. *Circulation*. 2009;120:1241-1247. doi:

10.1161/circulationaha.109.852202

18. Wik L, Olsen JA, Persse D, Sterz F, Lozano M, Jr., Brouwer MA, Westfall M, Souders CM, Travis DT, Herken UR, Lerner EB. Why do some studies find that CPR fraction is not a predictor of survival? *Resuscitation*. 2016;104:59-62. doi: 10.1016/j.resuscitation.2016.04.013

Brouwer TF, Walker RG, Chapman FW, Koster RW. Association Between Chest
 Compression Interruptions and Clinical Outcomes of Ventricular Fibrillation Out-of-Hospital
 Cardiac Arrest. *Circulation*. 2015;132:1030-1037. doi: 10.1161/circulationaha.115.014016

20. Cheskes S, Schmicker RH, Rea T, Morrison LJ, Grunau B, Drennan IR, Leroux B, Vaillancourt C, Schmidt TA, Koller AC, Kudenchuk P, Aufderheide TP, Herren H, Flickinger KH, Charleston M, Straight R, Christenson J. The association between AHA CPR quality guideline compliance and clinical outcomes from out-of-hospital cardiac arrest. *Resuscitation*. 2017;116:39-45. doi: 10.1016/j.resuscitation.2017.05.003

21. Vaillancourt C, Everson-Stewart S, Christenson J, Andrusiek D, Powell J, Nichol G, Cheskes S, Aufderheide TP, Berg R, Stiell IG. The impact of increased chest compression fraction on return of spontaneous circulation for out-of-hospital cardiac arrest patients not in ventricular fibrillation. *Resuscitation*. 2011;82:1501-1507. doi:

10.1016/j.resuscitation.2011.07.011

22. Rea T, Olsufka M, Yin L, Maynard C, Cobb L. The relationship between chest compression fraction and outcome from ventricular fibrillation arrests in prolonged resuscitations. *Resuscitation*. 2014;85:879-884. doi: 10.1016/j.resuscitation.2014.02.026

23. Vaillancourt C, Petersen A, Meier EN, Christenson J, Menegazzi JJ, Aufderheide TP, Nichol G, Berg R, Callaway CW, Idris AH, Davis D, Fowler R, Egan D, Andrusiek D, Buick JE, Bishop TJ, Colella MR, Sahni R, Stiell IG, Cheskes S. The impact of increased chest compression fraction on survival for out-of-hospital cardiac arrest patients with a non-shockable initial rhythm. *Resuscitation*. 2020;154:93-100. doi: 10.1016/j.resuscitation.2020.06.016

Cheskes S, Schmicker RH, Rea T, Powell J, Drennan IR, Kudenchuk P, Vaillancourt C,
Conway W, Stiell I, Stub D, Davis D, Alexander N, Christenson J. Chest compression fraction:
A time dependent variable of survival in shockable out-of-hospital cardiac arrest. *Resuscitation*.
2015;97:129-135. doi: 10.1016/j.resuscitation.2015.07.003

 Talikowska M, Tohira H, Inoue M, Bailey P, Brink D, Finn J. Lower chest compression fraction associated with ROSC in OHCA patients with longer downtimes. *Resuscitation*.
 2017;116:60-65. doi: 10.1016/j.resuscitation.2017.05.005

Uppiretla AK, G MG, Rao S, Don Bosco D, S MS, Sampath V. Effects of Chest
 Compression Fraction on Return of Spontaneous Circulation in Patients with Cardiac Arrest; a
 Brief Report. Adv J Emerg Med. 2020;4:e8. doi: 10.22114/ajem.v0i0.147

27. Cheskes S, Schmicker RH, Christenson J, Salcido DD, Rea T, Powell J, Edelson DP, Sell R, May S, Menegazzi JJ, Van Ottingham L, Olsufka M, Pennington S, Simonini J, Berg RA, Stiell I, Idris A, Bigham B, Morrison L. Perishock pause: an independent predictor of survival from out-of-hospital shockable cardiac arrest. *Circulation*. 2011;124:58-66. doi:

10.1161/circulationaha.110.010736

28. Cheskes S, Schmicker RH, Verbeek PR, Salcido DD, Brown SP, Brooks S, Menegazzi JJ, Vaillancourt C, Powell J, May S, Berg RA, Sell R, Idris A, Kampp M, Schmidt T, Christenson J. The impact of peri-shock pause on survival from out-of-hospital shockable cardiac arrest during the Resuscitation Outcomes Consortium PRIMED trial. *Resuscitation*. 2014;85:336-342. doi: 10.1016/j.resuscitation.2013.10.014

Wik L, Kramer-Johansen J, Myklebust H, Sørebø H, Svensson L, Fellows B, Steen PA.
 Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest. *Jama*.
 2005;293:299-304. doi: 10.1001/jama.293.3.299

Abella BS, Alvarado JP, Myklebust H, Edelson DP, Barry A, O'Hearn N, Vanden Hoek
 TL, Becker LB. Quality of cardiopulmonary resuscitation during in-hospital cardiac arrest. *Jama*.
 2005;293:305-310. doi: 10.1001/jama.293.3.305

 Valenzuela TD, Kern KB, Clark LL, Berg RA, Berg MD, Berg DD, Hilwig RW, Otto CW, Newburn D, Ewy GA. Interruptions of chest compressions during emergency medical systems resuscitation. *Circulation*. 2005;112:1259-1265. doi: 10.1161/circulationaha.105.537282
 Matsuura TR, Bartos JA, Tsangaris A, Shekar KC, Olson MD, Riess ML, Bienengraeber M, Aufderheide TP, Neumar RW, Rees JN, McKnite SH, Dikalova AE, Dikalov SI, Douglas HF, Yannopoulos D. Early Effects of Prolonged Cardiac Arrest and Ischemic Postconditioning during Cardiopulmonary Resuscitation on Cardiac and Brain Mitochondrial Function in Pigs. *Resuscitation*. 2017;116:8-15. doi: 10.1016/j.resuscitation.2017.03.033

33. Segal N, Matsuura T, Caldwell E, Sarraf M, McKnite S, Zviman M, Aufderheide TP, Halperin HR, Lurie KG, Yannopoulos D. Ischemic postconditioning at the initiation of cardiopulmonary resuscitation facilitates functional cardiac and cerebral recovery after

prolonged untreated ventricular fibrillation. *Resuscitation*. 2012;83:1397-1403. doi: 10.1016/j.resuscitation.2012.04.005

34. Smyth M, Smith C, Ristagno G, Bray J, Chung S, Dainty K, Folke F, Ikeyama T, Johnsen N, Kudenchuck P, Lagina A, Malta-Hansen C, Masterson S, Nehme Z, Nishiyama C, Norii T, Perkins GD, Vaillancourt C, Olasveengen TM, Morley PT ; on behalf of the International Liaison Committee on Resuscitation Basic Life Support Task Force. Impact of transport on CPR quality: BLS 1509a. 2022. <u>https://costr.ilcor.org/document/impact-of-transport-on-cpr-quality-bls-1509a</u>. Updated January 31, 2022. Accessed February 14, 2022.

35. Havel C, Schreiber W, Riedmuller E, Haugk M, Richling N, Trimmel H, Malzer R, Sterz F, Herkner H. Quality of closed chest compression in ambulance vehicles, flying helicopters and at the scene. *Resuscitation*. 2007;73:264-270. doi: 10.1016/j.resuscitation.2006.09.007

36. Putzer G, Braun P, Zimmermann A, Pedross F, Strapazzon G, Brugger H, Paal P.

LUCAS compared to manual cardiopulmonary resuscitation is more effective during helicopter rescue-a prospective, randomized, cross-over manikin study. *Am J Emerg Med.* 2013;31:384-389. doi: 10.1016/j.ajem.2012.07.018

37. Olasveengen TM, Wik L, Steen PA. Quality of cardiopulmonary resuscitation before and during transport in out-of-hospital cardiac arrest. *Resuscitation*. 2008;76:185-190. doi: 10.1016/j.resuscitation.2007.07.001

38. Odegaard S, Olasveengen T, Steen PA, Kramer-Johansen J. The effect of transport on quality of cardiopulmonary resuscitation in out-of-hospital cardiac arrest. *Resuscitation*.
2009;80:843-848. doi: <u>https://dx.doi.org/10.1016/j.resuscitation.2009.03.032</u>

39. Roosa JR, Vadeboncoeur TF, Dommer PB, Panchal AR, Venuti M, Smith G, Silver A,Mullins M, Spaite D, Bobrow BJ. CPR variability during ground ambulance transport of patients

in cardiac arrest. Resuscitation. 2013;84:592-595. doi:

https://dx.doi.org/10.1016/j.resuscitation.2012.07.042

40. Russi CS, Myers LA, Kolb LJ, Lohse CM, Hess EP, White RD. A Comparison of Chest Compression Quality Delivered During On-Scene and Ground Transport Cardiopulmonary Resuscitation. *West J Emerg Med.* 2016;17:634-639. doi: 10.5811/westjem.2016.6.29949

41. Cheskes S, Byers A, Zhan C, Verbeek PR, Ko D, Drennan IR, Buick JE, Brooks SC, Lin

S, Taher A, Morrison LJ. CPR quality during out-of-hospital cardiac arrest transport.

Resuscitation. 2017;114:34-39. doi: 10.1016/j.resuscitation.2017.02.016

42. Sunde K, Wik L, Steen PA. Quality of mechanical, manual standard and active compression-decompression CPR on the arrest site and during transport in a manikin model. *Resuscitation*. 1997;34:235-242. doi: 10.1016/s0300-9572(96)01087-8

43. Thomassen O, Skaiaa SC, Assmuss J, Østerås Ø, Heltne JK, Wik L, Brattebo G.
Mountain rescue cardiopulmonary resuscitation: a comparison between manual and mechanical chest compressions during manikin cardio resuscitation. *Emerg Med J*. 2017;34:573-577. doi: 10.1136/emermed-2016-206323

44. Abrams T, Torfason L. Evaluation of the Quality of Manual, Compression-Only Cardiopulmonary Resuscitation in a Moving Ski Patrol Toboggan. *High Alt Med Biol*.
2020;21:52-61. doi: 10.1089/ham.2019.0047

45. Stone CK, Thomas SH. Can correct closed-chest compressions be performed during prehospital transport? *Prehospital & Disaster Medicine*. 1995;10:121-123.

46. Grunau B, Kime N, Leroux B, Rea T, Van Belle G, Menegazzi JJ, Kudenchuk PJ, Vaillancourt C, Morrison LJ, Elmer J, Zive DM, Le NM, Austin M, Richmond NJ, Herren H, Christenson J. Association of Intra-arrest Transport vs Continued On-Scene Resuscitation With Survival to Hospital Discharge Among Patients With Out-of-Hospital Cardiac Arrest. *JAMA*. 2020;324:1058-1067. doi: <u>https://dx.doi.org/10.1001/jama.2020.14185</u>

47. Dunne C, Morgan P, Bierens J, Olasveengen T, Morley PT, Perkins GD; on behalf of the International Liaison Committee on Resuscitation BLS Life Support Task Force. CAB or ABC in drowning: systematic review. 2022. <u>https://costr.ilcor.org/document/cab-or-abc-in-drowning-bls-856-tf-systematic-review</u>. Updated January 20, 2022. Accessed February 14, 2022.

48. Lee J, Yang WC, Lee EP, Huang JL, Hsiao HJ, Lin MJ, Wu HP. Clinical Survey and Predictors of Outcomes of Pediatric Out-of-Hospital Cardiac Arrest Admitted to the Emergency Department. *Scientific Reports*. 2019;9:7032. doi: <u>https://dx.doi.org/10.1038/s41598-019-43020-</u>

0

de Caen AR, Maconochie IK, Aickin R, Atkins DL, Biarent D, Guerguerian AM,
Kleinman ME, Kloeck DA, Meaney PA, Nadkarni VM, Ng KC, Nuthall G, Reis AG, Shimizu N,
Tibballs J, Pintos RV. Part 6: Pediatric Basic Life Support and Pediatric Advanced Life Support:
2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular
Care Science With Treatment Recommendations (Reprint). *Pediatrics*. 2015;136 Suppl 2:S88119. doi: 10.1542/peds.2015-3373C

50. Maconochie IK, Aickin R, Hazinski MF, Atkins DL, Bingham R, Couto TB, Guerguerian AM, Nadkarni VM, Ng KC, Nuthall GA, Ong GYK, Reis AG, Schexnayder SM, Scholefield BR, Tijssen JA, Nolan JP, Morley PT, Van de Voorde P, Zaritsky AL, de Caen AR. Pediatric Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. *Resuscitation*. 2020;156:A120-a155. doi: 10.1016/j.resuscitation.2020.09.013

51. Marsch S, Tschan F, Semmer NK, Zobrist R, Hunziker PR, Hunziker S. ABC versus CAB for cardiopulmonary resuscitation: a prospective, randomized simulator-based trial. *Swiss Med Wkly*. 2013;143:w13856. doi: 10.4414/smw.2013.13856

52. Sekiguchi H, Kondo Y, Kukita I. Verification of changes in the time taken to initiate chest compressions according to modified basic life support guidelines. *Am J Emerg Med*. 2013;31:1248-1250. doi: 10.1016/j.ajem.2013.02.047

53. Bierens J, Abelairas-Gomez C, Barcala Furelos R, Beerman S, Claesson A, Dunne C, Elsenga HE, Morgan P, Mecrow T, Pereira JC, Scapigliati A, Seesink J, Schmidt A, Sempsrott J, Szpilman D, Warner DS, Webber J, Johnson S, Olasveengen T, Morley PT, Perkins GD. Resuscitation and emergency care in drowning: A scoping review. *Resuscitation*. 2021;162:205-217. doi: https://dx.doi.org/10.1016/j.resuscitation.2021.01.033

54. Szpilman D, Soares M. In-water resuscitation--is it worthwhile? *Resuscitation*.
2004;63:25-31. doi: 10.1016/j.resuscitation.2004.03.017

55. Mtaweh H, Kochanek PM, Carcillo JA, Bell MJ, Fink EL. Patterns of multiorgan dysfunction after pediatric drowning. *Resuscitation*. 2015;90:91-96. doi:

10.1016/j.resuscitation.2015.02.005

56. Donnino MW, Andersen LW, Berg KM, Reynolds JC, Nolan JP, Morley PT, Lang E, Cocchi MN, Xanthos T, Callaway CW, Soar J, Force IAT. Temperature Management After Cardiac Arrest: An Advisory Statement by the Advanced Life Support Task Force of the International Liaison Committee on Resuscitation and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation. *Circulation*. 2015;132:2448-2456. doi:

10.1161/CIR.000000000000313

Wyckoff 164

57. Granfeldt A, Holmberg MJ, Nolan JP, Soar J, Andersen LW, International Liaison Committee on Resuscitation Advanced Life Support Task F. Targeted temperature management in adult cardiac arrest: Systematic review and meta-analysis. *Resuscitation*. 2021;167:160-172. doi: 10.1016/j.resuscitation.2021.08.040

58. Soar J, Nolan JP, Andersen LW, Böttiger BW, Couper K, Deakin CD, Drennan I, Hirsch KG, Hsu CH, Nicholson TC, O'Neil BJ, Paiva EF, Parr MJ, Reynolds JC, Sandroni C, Wang TL, Callaway CW, Donnino MW, Granfeldt A, Holmberg MJ, Lavonas EJ, Morrison LJ, Nation K, Neumar RW, Nikolaou N, Skrifvars MB, Welsford M, Morley PT, Berg KM; on behalf of the International Liaison Committee on Resuscitation Advanced Life Support Task Force. Temperature management in adult cardiac arrest: advanced life support systematic review. 2021. https://costr.ilcor.org/document/systematic-review-temperature-management-in-adult-cardiac-arrest-als. Updated October 14, 2021. Accessed February 17, 2022.

59. Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. *N Engl J Med.* 2002;346:557-563. doi: 10.1056/NEJMoa003289

60. Dankiewicz J, Cronberg T, Lilja G, Jakobsen JC, Levin H, Ullen S, Rylander C, Wise MP, Oddo M, Cariou A, Belohlavek J, Hovdenes J, Saxena M, Kirkegaard H, Young PJ, Pelosi P, Storm C, Taccone FS, Joannidis M, Callaway C, Eastwood GM, Morgan MPG, Nordberg P, Erlinge D, Nichol AD, Chew MS, Hollenberg J, Thomas M, Bewley J, Sweet K, Grejs AM, Christensen S, Haenggi M, Levis A, Lundin A, During J, Schmidbauer S, Keeble TR, Karamasis GV, Schrag C, Faessler E, Smid O, Otahal M, Maggiorini M, Wendel Garcia PD, Jaubert P, Cole JM, Solar M, Borgquist O, Leithner C, Abed-Maillard S, Navarra L, Annborn M, Unden J, Brunetti I, Awad A, McGuigan P, Bjorkholt Olsen R, Cassina T, Vignon P, Langeland H, Lange T, Friberg H, Nielsen N; on behalf of the TTM Trial Investigators. Hypothermia versus Normothermia after Out-of-Hospital Cardiac Arrest. *N Engl J Med*. 2021;384:2283-2294. doi: 10.1056/NEJMoa2100591

61. Hachimi-Idrissi S, Zizi M, Nguyen DN, Schiettecate J, Ebinger G, Michotte Y, Huyghens L. The evolution of serum astroglial S-100 beta protein in patients with cardiac arrest treated with mild hypothermia. *Resuscitation*. 2005;64:187-192. doi:

10.1016/j.resuscitation.2004.08.008

62. Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. *N Engl J Med*. 2002;346:549-556. doi:

10.1056/NEJMoa012689

63. Lascarrou JB, Merdji H, Le Gouge A, Colin G, Grillet G, Girardie P, Coupez E, Dequin PF, Cariou A, Boulain T, Brule N, Frat JP, Asfar P, Pichon N, Landais M, Plantefeve G, Quenot JP, Chakarian JC, Sirodot M, Legriel S, Letheulle J, Thevenin D, Desachy A, Delahaye A, Botoc V, Vimeux S, Martino F, Giraudeau B, Reignier J; on behalf of the CRICS-TRIGGERSEP Group. Targeted Temperature Management for Cardiac Arrest with Nonshockable Rhythm. *N Engl J Med.* 2019;381:2327-2337. doi: 10.1056/NEJMoa1906661

64. Laurent I, Adrie C, Vinsonneau C, Cariou A, Chiche JD, Ohanessian A, Spaulding C, Carli P, Dhainaut JF, Monchi M. High-volume hemofiltration after out-of-hospital cardiac arrest: a randomized study. *J Am Coll Cardiol*. 2005;46:432-437. doi: 10.1016/j.jacc.2005.04.039

65. Bernard SA, Smith K, Cameron P, Masci K, Taylor DM, Cooper DJ, Kelly AM, Silvester W; on behalf of the Rapid Infusion of Cold Hartmanns (RICH) Investigators. Induction of therapeutic hypothermia by paramedics after resuscitation from out-of-hospital ventricular

fibrillation cardiac arrest: a randomized controlled trial. *Circulation*. 2010;122:737-742. doi: 10.1161/CIRCULATIONAHA.109.906859

66. Bernard SA, Smith K, Cameron P, Masci K, Taylor DM, Cooper DJ, Kelly AM, Silvester W; on behalf of the Rapid Infusion of Cold Hartmanns (RICH) Investigators. Induction of prehospital therapeutic hypothermia after resuscitation from nonventricular fibrillation cardiac arrest. *Crit Care Med*. 2012;40:747-753. doi: 10.1097/CCM.0b013e3182377038

67. Bernard SA, Smith K, Finn J, Hein C, Grantham H, Bray JE, Deasy C, Stephenson M, Williams TA, Straney LD, Brink D, Larsen R, Cotton C, Cameron P. Induction of Therapeutic Hypothermia During Out-of-Hospital Cardiac Arrest Using a Rapid Infusion of Cold Saline: The RINSE Trial (Rapid Infusion of Cold Normal Saline). *Circulation*. 2016;134:797-805. doi: 10.1161/CIRCULATIONAHA.116.021989

 Castren M, Nordberg P, Svensson L, Taccone F, Vincent JL, Desruelles D, Eichwede F, Mols P, Schwab T, Vergnion M, Storm C, Pesenti A, Pachl J, Guerisse F, Elste T, Roessler M, Fritz H, Durnez P, Busch HJ, Inderbitzen B, Barbut D. Intra-arrest transnasal evaporative cooling: a randomized, prehospital, multicenter study (PRINCE: Pre-ROSC IntraNasal Cooling Effectiveness). *Circulation*. 2010;122:729-736. doi: 10.1161/CIRCULATIONAHA.109.931691
 Debaty G, Maignan M, Savary D, Koch FX, Ruckly S, Durand M, Picard J, Escallier C, Chouquer R, Santre C, Minet C, Guergour D, Hammer L, Bouvaist H, Belle L, Adrie C, Payen JF, Carpentier F, Gueugniaud PY, Danel V, Timsit JF. Impact of intra-arrest therapeutic hypothermia in outcomes of prehospital cardiac arrest: a randomized controlled trial. *Intensive Care Med*. 2014;40:1832-1842. doi: 10.1007/s00134-014-3519-x 70. Kamarainen A, Virkkunen I, Tenhunen J, Yli-Hankala A, Silfvast T. Prehospital therapeutic hypothermia for comatose survivors of cardiac arrest: a randomized controlled trial. *Acta Anaesthesiol Scand*. 2009;53:900-907. doi: 10.1111/j.1399-6576.2009.02015.x

71. Kim F, Nichol G, Maynard C, Hallstrom A, Kudenchuk PJ, Rea T, Copass MK, Carlbom D, Deem S, Longstreth WT, Jr., Olsufka M, Cobb LA. Effect of prehospital induction of mild hypothermia on survival and neurological status among adults with cardiac arrest: a randomized clinical trial. *JAMA*. 2014;311:45-52. doi: 10.1001/jama.2013.282173

72. Kim F, Olsufka M, Longstreth WT, Jr., Maynard C, Carlbom D, Deem S, Kudenchuk P, Copass MK, Cobb LA. Pilot randomized clinical trial of prehospital induction of mild hypothermia in out-of-hospital cardiac arrest patients with a rapid infusion of 4 degrees C normal saline. *Circulation*. 2007;115:3064-3070. doi: 10.1161/CIRCULATIONAHA.106.655480

73. Nordberg P, Taccone FS, Truhlar A, Forsberg S, Hollenberg J, Jonsson M, Cuny J, Goldstein P, Vermeersch N, Higuet A, Jimenes FC, Ortiz FR, Williams J, Desruelles D, Creteur J, Dillenbeck E, Busche C, Busch HJ, Ringh M, Konrad D, Peterson J, Vincent JL, Svensson L. Effect of Trans-Nasal Evaporative Intra-arrest Cooling on Functional Neurologic Outcome in Out-of-Hospital Cardiac Arrest: The PRINCESS Randomized Clinical Trial. *JAMA*. 2019;321:1677-1685. doi: 10.1001/jama.2019.4149

74. Scales DC, Cheskes S, Verbeek PR, Pinto R, Austin D, Brooks SC, Dainty KN,
Goncharenko K, Mamdani M, Thorpe KE, Morrison LJ, Strategies for Post-Arrest Care SN.
Prehospital cooling to improve successful targeted temperature management after cardiac arrest:
A randomized controlled trial. *Resuscitation*. 2017;121:187-194. doi:

10.1016/j.resuscitation.2017.10.002

75. Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, Horn J,

Hovdenes J, Kjaergaard J, Kuiper M, Pellis T, Stammet P, Wanscher M, Wise MP, Aneman A, Al-Subaie N, Boesgaard S, Bro-Jeppesen J, Brunetti I, Bugge JF, Hingston CD, Juffermans NP, Koopmans M, Kober L, Langorgen J, Lilja G, Moller JE, Rundgren M, Rylander C, Smid O, Werer C, Winkel P, Friberg H; on behalf of the TTM Trial Investigators. Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. *N Engl J Med.* 2013;369:2197-2206. doi: 10.1056/NEJMoa1310519

76. Lopez-de-Sa E, Juarez M, Armada E, Sanchez-Salado JC, Sanchez PL, Loma-Osorio P, Sionis A, Monedero MC, Martinez-Selles M, Martin-Benitez JC, Ariza A, Uribarri A, Garcia-Acuna JM, Villa P, Perez PJ, Storm C, Dee A, Lopez-Sendon JL. A multicentre randomized pilot trial on the effectiveness of different levels of cooling in comatose survivors of out-of-hospital cardiac arrest: the FROST-I trial. *Intensive Care Med.* 2018;44:1807-1815. doi: 10.1007/s00134-018-5256-z

77. Lopez-de-Sa E, Rey JR, Armada E, Salinas P, Viana-Tejedor A, Espinosa-Garcia S,
Martinez-Moreno M, Corral E, Lopez-Sendon J. Hypothermia in comatose survivors from outof-hospital cardiac arrest: pilot trial comparing 2 levels of target temperature. *Circulation*.
2012;126:2826-2833. doi: 10.1161/CIRCULATIONAHA.112.136408

78. Kirkegaard H, Soreide E, de Haas I, Pettila V, Taccone FS, Arus U, Storm C, Hassager C, Nielsen JF, Sorensen CA, Ilkjaer S, Jeppesen AN, Grejs AM, Duez CHV, Hjort J, Larsen AI, Toome V, Tiainen M, Hastbacka J, Laitio T, Skrifvars MB. Targeted Temperature Management for 48 vs 24 Hours and Neurologic Outcome After Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial. *JAMA*. 2017;318:341-350. doi: 10.1001/jama.2017.8978

79. Pittl U, Schratter A, Desch S, Diosteanu R, Lehmann D, Demmin K, Horig J, Schuler G, Klemm T, Mende M, Thiele H. Invasive versus non-invasive cooling after in- and out-of-hospital cardiac arrest: a randomized trial. *Clin Res Cardiol*. 2013;102:607-614. doi: 10.1007/s00392-013-0572-3

80. Deye N, Cariou A, Girardie P, Pichon N, Megarbane B, Midez P, Tonnelier JM, Boulain T, Outin H, Delahaye A, Cravoisy A, Mercat A, Blanc P, Santre C, Quintard H, Brivet F, Charpentier J, Garrigue D, Francois B, Quenot JP, Vincent F, Gueugniaud PY, Mira JP, Carli P, Vicaut E, Baud FJ; on behalf of the Clinical and Economical Impact of Endovascular Cooling in the Management of Cardiac Arrest (ICEREA) Study Group. Endovascular Versus External Targeted Temperature Management for Patients With Out-of-Hospital Cardiac Arrest: A Randomized, Controlled Study. *Circulation*. 2015;132:182-193. doi:

10.1161/CIRCULATIONAHA.114.012805

81. Look X, Li H, Ng M, Lim ETS, Pothiawala S, Tan KBK, Sewa DW, Shahidah N, Pek PP, Ong MEH. Randomized controlled trial of internal and external targeted temperature management methods in post- cardiac arrest patients. *Am J Emerg Med.* 2018;36:66-72. doi: 10.1016/j.ajem.2017.07.017

82. Bray JE, Stub D, Bloom JE, Segan L, Mitra B, Smith K, Finn J, Bernard S. Changing target temperature from 33 degrees C to 36 degrees C in the ICU management of out-of-hospital cardiac arrest: A before and after study. *Resuscitation*. 2017;113:39-43. doi:

10.1016/j.resuscitation.2017.01.016

83. Salter R, Bailey M, Bellomo R, Eastwood G, Goodwin A, Nielsen N, Pilcher D, Nichol
A, Saxena M, Shehabi Y, Young P, Australian, New Zealand Intensive Care Society Centre for
O, Resource E. Changes in Temperature Management of Cardiac Arrest Patients Following

Publication of the Target Temperature Management Trial. *Crit Care Med.* 2018;46:1722-1730. doi: 10.1097/CCM.00000000003339

84. Nolan JP, Orzechowska I, Harrison DA, Soar J, Perkins GD, Shankar-Hari M. Changes in temperature management and outcome after out-of-hospital cardiac arrest in United Kingdom intensive care units following publication of the targeted temperature management trial. *Resuscitation*. 2021;162:304-311. doi: 10.1016/j.resuscitation.2021.03.027

85. Kim JG, Ahn C, Shin H, Kim W, Lim TH, Jang BH, Cho Y, Choi KS, Lee J, Na MK. Efficacy of the cooling method for targeted temperature management in post-cardiac arrest patients: A systematic review and meta-analysis. *Resuscitation*. 2020;148:14-24. doi:

10.1016/j.resuscitation.2019.12.025

86. Bartlett ES, Valenzuela T, Idris A, Deye N, Glover G, Gillies MA, Taccone FS, Sunde K, Flint AC, Thiele H, Arrich J, Hemphill C, Holzer M, Skrifvars MB, Pittl U, Polderman KH, Ong MEH, Kim KH, Oh SH, Do Shin S, Kirkegaard H, Nichol G. Systematic review and metaanalysis of intravascular temperature management vs. surface cooling in comatose patients resuscitated from cardiac arrest. *Resuscitation*. 2020;146:82-95. doi:

10.1016/j.resuscitation.2019.10.035

87. Wyckoff MH, Singletary EM, Soar J, Olasveengen TM, Greif R, Liley HG, Zideman D, Bhanji F, Andersen LW, Avis SR, Aziz K, Bendall JC, Berry DC, Borra V, Bottiger BW, Bradley R, Bray JE, Breckwoldt J, Carlson JN, Cassan P, Castren M, Chang WT, Charlton NP, Cheng A, Chung SP, Considine J, Costa-Nobre DT, Couper K, Dainty KN, Davis PG, de Almeida MF, de Caen AR, de Paiva EF, Deakin CD, Djarv T, Douma MJ, Drennan IR, Duff JP, Eastwood KJ, Epstein JL, Escalante R, Fabres JG, Fawke J, Finn JC, Foglia EE, Folke F, Freeman K, Gilfoyle E, Goolsby CA, Grove A, Guinsburg R, Hatanaka T, Hazinski MF, Heriot GS, Hirsch KG, Holmberg MJ, Hosono S, Hsieh MJ, Hung KKC, Hsu CH, Ikeyama T, Isayama T, Kapadia VS, Kawakami M, Kim HS, Kloeck DA, Kudenchuk PJ, Lagina AT, Lauridsen KG, Lavonas EJ, Lockey AS, Malta Hansen C, Markenson D, Matsuyama T, McKinlay CJD, Mehrabian A, Merchant RM, Meyran D, Morley PT, Morrison LJ, Nation KJ, Nemeth M, Neumar RW, Nicholson T, Niermeyer S, Nikolaou N, Nishiyama C, O'Neil BJ, Orkin AM, Osemeke O, Parr MJ, Patocka C, Pellegrino JL, Perkins GD, Perlman JM, Rabi Y, Reynolds JC, Ristagno G, Roehr CC, Sakamoto T, Sandroni C, Sawyer T, Schmolzer GM, Schnaubelt S, Semeraro F, Skrifvars MB, Smith CM, Smyth MA, Soll RF, Sugiura T, Taylor-Phillips S, Trevisanuto D, Vaillancourt C, Wang TL, Weiner GM, Welsford M, Wigginton J, Wyllie JP, Yeung J, Nolan JP, Berg KM. 2021 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations: Summary From the Basic Life Support; Advanced Life Support; Neonatal Life Support; Education, Implementation, and Teams; First Aid Task Forces; and the COVID-19 Working Group. *Circulation*. 2021:CIR000000000001017. doi: 10.1161/CIR.0000000000001017

88. Reynolds JC, Nicholson T, O'Neil B, Drennan IR, Issa M, Welsford M, Advanced Life Support Task Force at the International Liaison Committee on Resuscitation I. Diagnostic Test Accuracy of Point-of-Care Ultrasound During Cardiopulmonary Resuscitation to Indicate the Etiology of Cardiac Arrest: A Systematic Review. *Resuscitation*. 2022; doi:

10.1016/j.resuscitation.2022.01.006

89. Reynolds JC, Nicholson TC, O'Neil BJ, Drennan I, Issa M, Welsford M; on behalf of the International Liaison Committee on Resuscitation Advanced Life Support Task Force. Diagnostic test accuracy of point-of-care ultrasound during cardiopulmonary resuscitation to indicate the etiology of cardiac arrest. 2022. <u>https://costr.ilcor.org/document/diagnostic-test-</u> accuracy-of-point-of-care-ultrasound-during-cardiopulmonary-resuscitation-to-indicate-theetiology-of-cardiac-arrest. Updated February 10, 2022. Accessed March 4, 2022.

90. van der Wouw PA, Koster RW, Delemarre BJ, de Vos R, Lampe-Schoenmaeckers AJ, Lie KI. Diagnostic accuracy of transesophageal echocardiography during cardiopulmonary resuscitation. *J Am Coll Cardiol*. 1997;30:780-783. doi: 10.1016/s0735-1097(97)00218-0

91. Chua MT, Chan GW, Kuan WS. Reversible Causes in Cardiovascular Collapse at the Emergency Department Using Ultrasonography (REVIVE-US). *Ann Acad Med Singap*.
2017;46:310-316.

92. Hilberath JN, Burrage PS, Shernan SK, Varelmann DJ, Wilusz K, Fox JA, Eltzschig HK, Epstein LM, Nowak-Machen M. Rescue transoesophageal echocardiography for refractory haemodynamic instability during transvenous lead extraction. *Eur Heart J Cardiovasc Imaging*. 2014;15:926-932. doi: 10.1093/ehjci/jeu043

93. Jung WJ, Cha KC, Kim YW, Kim YS, Roh YI, Kim SJ, Kim HS, Hwang SO. Intra-arrest transoesophageal echocardiographic findings and resuscitation outcomes. *Resuscitation*.
2020;154:31-37. doi: 10.1016/j.resuscitation.2020.06.035

94. Lien WC, Hsu SH, Chong KM, Sim SS, Wu MC, Chang WT, Fang CC, Ma MH, Chen SC, Chen WJ. US-CAB protocol for ultrasonographic evaluation during cardiopulmonary resuscitation: Validation and potential impact. *Resuscitation*. 2018;127:125-131. doi: 10.1016/j.resuscitation.2018.01.051

95. Lin T, Chen Y, Lu C, Wang M. Use of transoesophageal echocardiography during cardiac arrest in patients undergoing elective non-cardiac surgery. *Br J Anaesth*. 2006;96:167-170. doi: 10.1093/bja/aei303

96. Memtsoudis SG, Rosenberger P, Loffler M, Eltzschig HK, Mizuguchi A, Shernan SK,

Fox JA. The usefulness of transesophageal echocardiography during intraoperative cardiac arrest in noncardiac surgery. *Anesth Analg.* 2006;102:1653-1657. doi:

10.1213/01.ane.0000216412.83790.29

97. Shillcutt SK, Markin NW, Montzingo CR, Brakke TR. Use of rapid "rescue" perioperative echocardiography to improve outcomes after hemodynamic instability in noncardiac surgical patients. *J Cardiothorac Vasc Anesth*. 2012;26:362-370. doi:

10.1053/j.jvca.2011.09.029

98. Tayal VS, Kline JA. Emergency echocardiography to detect pericardial effusion in patients in PEA and near-PEA states. *Resuscitation*. 2003;59:315-318. doi: 10.1016/s0300-9572(03)00245-4

99. Varriale P, Maldonado JM. Echocardiographic observations during in hospital cardiopulmonary resuscitation. *Crit Care Med.* 1997;25:1717-1720. doi: 10.1097/00003246-199710000-00023

100. Zengin S, Yavuz E, Al B, Cindoruk S, Altunbas G, Gumusboga H, Yildirim C. Benefits of cardiac sonography performed by a non-expert sonographer in patients with non-traumatic cardiopulmonary arrest. *Resuscitation*. 2016;102:105-109. doi:

10.1016/j.resuscitation.2016.02.025

101. Zengin S, Yildirim C, Al B, Genc S, Kilic H, Dogan M. The effectiveness of ultrasound in patients with non-traumatic cardiopulmonary arrest. *Journal of Academic Emergency Medicine*. 2012;11:68-72.

102. Huis In 't Veld MA, Allison MG, Bostick DS, Fisher KR, Goloubeva OG, Witting MD, Winters ME. Ultrasound use during cardiopulmonary resuscitation is associated with delays in chest compressions. *Resuscitation*. 2017;119:95-98. doi: 10.1016/j.resuscitation.2017.07.021

103. Clattenburg EJ, Wroe P, Brown S, Gardner K, Losonczy L, Singh A, Nagdev A. Pointof-care ultrasound use in patients with cardiac arrest is associated prolonged cardiopulmonary resuscitation pauses: A prospective cohort study. *Resuscitation*. 2018;122:65-68. doi:

10.1016/j.resuscitation.2017.11.056

104. Clattenburg EJ, Wroe PC, Gardner K, Schultz C, Gelber J, Singh A, Nagdev A.
Implementation of the Cardiac Arrest Sonographic Assessment (CASA) protocol for patients
with cardiac arrest is associated with shorter CPR pulse checks. *Resuscitation*. 2018;131:69-73.
doi: 10.1016/j.resuscitation.2018.07.030

105. Gaspari R, Harvey J, DiCroce C, Nalbandian A, Hill M, Lindsay R, Nordberg A, Graham P, Kamilaris A, Gleeson T. Echocardiographic pre-pause imaging and identifying the acoustic window during CPR reduces CPR pause time during ACLS - A prospective Cohort Study. *Resusc Plus.* 2021;6:100094. doi: 10.1016/j.resplu.2021.100094

106. Teran F. Resuscitative Cardiopulmonary Ultrasound and Transesophageal
Echocardiography in the Emergency Department. *Emerg Med Clin North Am.* 2019;37:409-430.
doi: 10.1016/j.emc.2019.03.003

107. Andersen LW, Isbye D, Kjaergaard J, Kristensen CM, Darling S, Zwisler ST, Fisker S, Schmidt JC, Kirkegaard H, Grejs AM, Rossau JRG, Larsen JM, Rasmussen BS, Riddersholm S, Iversen K, Schultz M, Nielsen JL, Lofgren B, Lauridsen KG, Solling C, Paelestik K, Kjaergaard AG, Due-Rasmussen D, Folke F, Charlot MG, Jepsen R, Wiberg S, Donnino M, Kurth T, Hoybye M, Sindberg B, Holmberg MJ, Granfeldt A. Effect of Vasopressin and Methylprednisolone vs Placebo on Return of Spontaneous Circulation in Patients With In-Hospital Cardiac Arrest: A Randomized Clinical Trial. *JAMA*. 2021;326:1586-1594. doi: 10.1001/jama.2021.16628

108. Holmberg MJ, Granfeldt A, Mentzelopoulos SD, Andersen LW. Vasopressin and glucocorticoids for in-hospital cardiac arrest: A systematic review and meta-analysis of individual participant data. *Resuscitation*. 2022;171:48-56. doi:

10.1016/j.resuscitation.2021.12.030

109. Nicholson TC, Couper K, Drennan I, Andersen LW, Garg R, Granfeldt A, Hirsch K, Holmberg MJ, Hsu C, Kudenchuk P, Nolan J, Ohshimo S, Reynolds J, Sandroni C, Skrifvars M, Soar J, Zelop C, Lavonas EJ, Morley P, Berg KM; on behalf of the International Liaison Committee on Resuscitation Advanced Life Support Task Force. Use of vasopressin and corticosteroids during cardiac arrest. 2022. <u>https://costr.ilcor.org/document/use-of-vasopressin-</u> and-corticosteroids-during-cardiac-arrest. Updated February 13, 2022. Accessed February 17, 2022.

110. Mentzelopoulos SD, Malachias S, Chamos C, Konstantopoulos D, Ntaidou T,
Papastylianou A, Kolliantzaki I, Theodoridi M, Ischaki H, Makris D, Zakynthinos E, Zintzaras
E, Sourlas S, Aloizos S, Zakynthinos SG. Vasopressin, steroids, and epinephrine and
neurologically favorable survival after in-hospital cardiac arrest: a randomized clinical trial. *JAMA*. 2013;310:270-279. doi: 10.1001/jama.2013.7832

111. Mentzelopoulos SD, Zakynthinos SG, Tzoufi M, Katsios N, Papastylianou A, Gkisioti S, Stathopoulos A, Kollintza A, Stamataki E, Roussos C. Vasopressin, epinephrine, and corticosteroids for in-hospital cardiac arrest. *Arch Intern Med.* 2009;169:15-24. doi: 10.1001/archinternmed.2008.509

112. Callaway CW, Soar J, Aibiki M, Bottiger BW, Brooks SC, Deakin CD, Donnino MW, Drajer S, Kloeck W, Morley PT, Morrison LJ, Neumar RW, Nicholson TC, Nolan JP, Okada K, O'Neil BJ, Paiva EF, Parr MJ, Wang TL, Witt J; on behalf of the Advanced Life Support Chapter Collaborators. Part 4: Advanced Life Support: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. *Circulation*. 2015;132:S84-145. doi: 10.1161/CIR.000000000000273

113. Nikolaou NI, Netherton S, Welsford M, Drennan IR, Nation K, Belley-Cote E, Torabi N, Morrison LJ, International Liaison Committee on Resuscitation Advanced Life Support Task F. A systematic review and meta-analysis of the effect of routine early angiography in patients with return of spontaneous circulation after Out-of-Hospital Cardiac Arrest. *Resuscitation*.
2021;163:28-48. doi: 10.1016/j.resuscitation.2021.03.019

114. Desch S, Freund A, Akin I, Behnes M, Preusch MR, Zelniker TA, Skurk C, Landmesser U, Graf T, Eitel I, Fuernau G, Haake H, Nordbeck P, Hammer F, Felix SB, Hassager C, Engstrom T, Fichtlscherer S, Ledwoch J, Lenk K, Joner M, Steiner S, Liebetrau C, Voigt I, Zeymer U, Brand M, Schmitz R, Horstkotte J, Jacobshagen C, Poss J, Abdel-Wahab M, Lurz P, Jobs A, de Waha-Thiele S, Olbrich D, Sandig F, Konig IR, Brett S, Vens M, Klinge K, Thiele H; on behalf of the TOMAHAWK Investigators. Angiography after Out-of-Hospital Cardiac Arrest without ST-Segment Elevation. *N Engl J Med.* 2021;385:2544-2553. doi:

10.1056/NEJMoa2101909

115. Lemkes JS, Janssens GN, van der Hoeven NW, Jewbali LSD, Dubois EA, Meuwissen MM, Rijpstra TA, Bosker HA, Blans MJ, Bleeker GB, Baak RR, Vlachojannis GJ, Eikemans BJW, van der Harst P, van der Horst ICC, Voskuil M, van der Heijden JJ, Beishuizen A, Stoel M, Camaro C, van der Hoeven H, Henriques JP, Vlaar APJ, Vink MA, van den Bogaard B,

Heestermans T, de Ruijter W, Delnoij TSR, Crijns H, Jessurun GAJ, Oemrawsingh PV,
Gosselink MTM, Plomp K, Magro M, Elbers PWG, Spoormans EM, van de Ven PM,
Oudemans-van Straaten HM, van Royen N. Coronary Angiography After Cardiac Arrest
Without ST Segment Elevation: One-Year Outcomes of the COACT Randomized Clinical Trial. *JAMA Cardiol.* 2020;5:1358-1365. doi: 10.1001/jamacardio.2020.3670

116. Drennan IR, Nikolaou N, Netherton S, Welsford M, Nation K, Belley-Cote E, Torabi N, Morrison LJ; on behalf of the International Liaison Committee on Resuscitation Advanced Life Support Task Force. Early coronary angiography post-ROSC. 2022.

https://costr.ilcor.org/document/early-coronary-angiography-post-rosc-2022. Updated March 10, 2022. Accessed March 15, 2022.

117. Kern KB, Radsel P, Jentzer JC, Seder DB, Lee KS, Lotun K, Janardhanan R, Stub D, Hsu CH, Noc M. Randomized Pilot Clinical Trial of Early Coronary Angiography Versus No Early Coronary Angiography After Cardiac Arrest Without ST-Segment Elevation: The PEARL Study. *Circulation*. 2020;142:2002-2012. doi: 10.1161/CIRCULATIONAHA.120.049569

118. Lemkes JS, Janssens GN, van der Hoeven NW, Jewbali LSD, Dubois EA, Meuwissen M, Rijpstra TA, Bosker HA, Blans MJ, Bleeker GB, Baak R, Vlachojannis GJ, Eikemans BJW, van der Harst P, van der Horst ICC, Voskuil M, van der Heijden JJ, Beishuizen A, Stoel M, Camaro C, van der Hoeven H, Henriques JP, Vlaar APJ, Vink MA, van den Bogaard B, Heestermans T, de Ruijter W, Delnoij TSR, Crijns H, Jessurun GAJ, Oemrawsingh PV, Gosselink MTM, Plomp K, Magro M, Elbers PWG, van de Ven PM, Oudemans-van Straaten HM, van Royen N. Coronary Angiography after Cardiac Arrest without ST-Segment Elevation. *N Engl J Med*. 2019;380:1397-1407. doi: 10.1056/NEJMoa1816897 119. Atkins DL, Acworth J, Chung SP, Reis A, Van de Voorde P; on behalf of the International Liaison Committee on Resuscitation Pediatric and Basic Life Support Task Forces. Application of automated external defibrillators in infants, children and adolescents in cardiac arrest. January 7, 2022. Updated January 28, 2022. <u>https://costr.ilcor.org/document/inclusion-ofinfants-children-and-adolescents-in-public-access-defibrillation-programs</u>. Accessed February 17, 2022.

120. Naim MY, Burke RV, McNally BF, Song L, Griffis HM, Berg RA, Vellano K, Markenson D, Bradley RN, Rossano JW. Association of Bystander Cardiopulmonary Resuscitation With Overall and Neurologically Favorable Survival After Pediatric Out-of-Hospital Cardiac Arrest in the United States: A Report From the Cardiac Arrest Registry to Enhance Survival Surveillance Registry. *JAMA Pediatr*. 2017;171:133-141. doi:

10.1001/jamapediatrics.2016.3643

121. Naim MY, Griffis HM, Burke RV, McNally BF, Song L, Berg RA, Nadkarni VM,
Vellano K, Markenson D, Bradley RN, Rossano JW. Race/Ethnicity and Neighborhood
Characteristics Are Associated With Bystander Cardiopulmonary Resuscitation in Pediatric Outof-Hospital Cardiac Arrest in the United States: A Study From CARES. *J Am Heart Assoc*.
2019;8:e012637. doi: 10.1161/JAHA.119.012637

 Griffis H, Wu L, Naim MY, Bradley R, Tobin J, McNally B, Vellano K, Quan L, Markenson D, Rossano JW; and the CARES Surveillance Group. Characteristics and outcomes of AED use in pediatric cardiac arrest in public settings: The influence of neighborhood characteristics. *Resuscitation*. 2020;146:126-131. doi: 10.1016/j.resuscitation.2019.09.038
 Kiyohara K, Nitta M, Sato Y, Kojimahara N, Yamaguchi N, Iwami T, Kitamura T. Ten-

Year Trends of Public-Access Defibrillation in Japanese School-Aged Patients Having

Wyckoff 179

Neurologically Favorable Survival After Out-of-Hospital Cardiac Arrest. *Am J Cardiol*. 2018;122:890-897. doi: 10.1016/j.amjcard.2018.05.021

124. Maconochie IK, Aickin R, Hazinski MF, Atkins DL, Bingham R, Couto TB, Guerguerian AM, Nadkarni VM, Ng KC, Nuthall GA, Ong GYK, Reis AG, Schexnayder SM, Scholefield BR, Tijssen JA, Nolan JP, Morley PT, Van de Voorde P, Zaritsky AL, de Caen AR; on behalf of the Pediatric Life Support Collaborators. Pediatric Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. *Circulation*. 2020;142:S140-S184. doi: 10.1161/CIR.0000000000000894 125. Ong GYK, Acworth J, KC Ng, Chong SL, Goh MSL, Yao SHW; on behalf of the International Liaison Committee on Resuscitation Pediatric Life Support Task Forces. Pediatric early warning systems (PEWS) with or without rapid response teams. February 11, 2022. Updated February 14, 2022. <u>https://costr.ilcor.org/document/pediatric-early-warning-systems-pews</u>. Accessed February 17, 2022.

126. Parshuram CS, Dryden-Palmer K, Farrell C, Gottesman R, Gray M, Hutchison JS, Helfaer M, Hunt EA, Joffe AR, Lacroix J, Moga MA, Nadkarni V, Ninis N, Parkin PC, Wensley D, Willan AR, Tomlinson GA; on behalf of the Canadian Critical Care Trials Group and the EPOCH Investigators. Effect of a Pediatric Early Warning System on All-Cause Mortality in Hospitalized Pediatric Patients: The EPOCH Randomized Clinical Trial. *JAMA*. 2018;319:1002-1012. doi: 10.1001/jama.2018.0948

127. Agulnik A, Mora Robles LN, Forbes PW, Soberanis Vasquez DJ, Mack R, Antillon-Klussmann F, Kleinman M, Rodriguez-Galindo C. Improved outcomes after successful implementation of a pediatric early warning system (PEWS) in a resource-limited pediatric oncology hospital. *Cancer*. 2017;123:2965-2974. doi: 10.1002/cncr.30664 128. Bonafide CP, Localio AR, Roberts KE, Nadkarni VM, Weirich CM, Keren R. Impact of rapid response system implementation on critical deterioration events in children. *JAMA Pediatr*. 2014;168:25-33. doi: 10.1001/jamapediatrics.2013.3266

129. Brilli RJ, Gibson R, Luria JW, Wheeler TA, Shaw J, Linam M, Kheir J, McLain P, Lingsch T, Hall-Haering A, McBride M. Implementation of a medical emergency team in a large pediatric teaching hospital prevents respiratory and cardiopulmonary arrests outside the intensive care unit. *Pediatr Crit Care Med*. 2007;8:236-246; quiz 247. doi:

10.1097/01.PCC.0000262947.72442.EA

130. Hanson CC, Randolph GD, Erickson JA, Mayer CM, Bruckel JT, Harris BD, Willis TS. A reduction in cardiac arrests and duration of clinical instability after implementation of a paediatric rapid response system. *Postgrad Med J.* 2010;86:314-318. doi:

10.1136/qshc.2007.026054

131. Kotsakis A, Lobos AT, Parshuram C, Gilleland J, Gaiteiro R, Mohseni-Bod H, Singh R,
Bohn D, Ontario Pediatric Critical Care Response Team C. Implementation of a multicenter
rapid response system in pediatric academic hospitals is effective. *Pediatrics*. 2011;128:72-78.
doi: 10.1542/peds.2010-0756

McKay H, Mitchell IA, Sinn K, Mugridge H, Lafferty T, Van Leuvan C, Mamootil S,
Abdel-Latif ME. Effect of a multifaceted intervention on documentation of vital signs and staff
communication regarding deteriorating paediatric patients. *J Paediatr Child Health*. 2013;49:4856. doi: 10.1111/jpc.12019

133. Sefton G, McGrath C, Tume L, Lane S, Lisboa PJ, Carrol ED. What impact did a Paediatric Early Warning system have on emergency admissions to the paediatric intensive care

unit? An observational cohort study. *Intensive Crit Care Nurs*. 2015;31:91-99. doi: 10.1016/j.iccn.2014.01.001

134. Sharek PJ, Parast LM, Leong K, Coombs J, Earnest K, Sullivan J, Frankel LR, Roth SJ. Effect of a rapid response team on hospital-wide mortality and code rates outside the ICU in a Children's Hospital. *JAMA*. 2007;298:2267-2274. doi: 10.1001/jama.298.19.2267

135. Tibballs J, Kinney S. Reduction of hospital mortality and of preventable cardiac arrest and death on introduction of a pediatric medical emergency team. *Pediatr Crit Care Med*.
2009;10:306-312. doi: 10.1097/PCC.0b013e318198b02c

136. Hunt EA, Zimmer KP, Rinke ML, Shilkofski NA, Matlin C, Garger C, Dickson C, Miller MR. Transition from a traditional code team to a medical emergency team and categorization of cardiopulmonary arrests in a children's center. *Arch Pediatr Adolesc Med.* 2008;162:117-122. doi: 10.1001/archpediatrics.2007.33

137. Parshuram CS, Bayliss A, Reimer J, Middaugh K, Blanchard N. Implementing the
Bedside Paediatric Early Warning System in a community hospital: A prospective observational
study. *Paediatr Child Health*. 2011;16:e18-22. doi: 10.1093/pch/16.3.e18

138. Scholefield BR, Guerguerian AM, Tijssen J, Acworth J, Aickin R, Atkins D, De Caen A, Couto TB, Kleinman M, Kloeck D, Nuthall G, Maconochie I, Nadkarni V, Ong GY, Reis A, Rodriguez-Nunez A, Schexnayder S, Van de Voorde P, Ng KC; on behalf of the ILCOR Pediatric Life Support Task Force. Post-arrest temperature management in children: statement on post cardiac arrest temperature management in children. International Liaison Committee on Resuscitation. November 2021. <u>https://ilcor.org/news/post-arrest-temperature-management-in-</u> children. Accessed February 17, 2022. 139. Perlman JM, Wyllie J, Kattwinkel J, Wyckoff MH, Aziz K, Guinsburg R, Kim HS, Liley HG, Mildenhall L, Simon WM, Szyld E, Tamura M, Velaphi S; on behalf of the Neonatal Resuscitation Chapter Collaborators. Part 7: neonatal resuscitation: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. *Circulation*. 2015;132(suppl 1):S204–S241. doi:

10.1161/CIR.00000000000276

140. Lunze K, Bloom DE, Jamison DT, Hamer DH. The global burden of neonatal hypothermia: systematic review of a major challenge for newborn survival. *BMC Med*.
2013;11:24. doi: 10.1186/1741-7015-11-24

141. de Almeida MF, Dawson JA, Ramaswamy VV, Trevisanuto D, Nakwa FL, Kamlin COF, Hosono S, Rabi Y, Costa-Nobre DT, Davis PG, El-Naggar W, Fabres JG, Fawke J, Foglia EE, Guinsburg R, Isayama T, Kapadia VS, Kawakami MD, Kim HS, Lee HC, McKinlay CJD, Madar RJ, Perlman JM, Roehr CC, Rüdiger M, Schmölzer GM, Sugiura T, Weiner GM, Wyllie JP, Wyckoff MH, Liley HG; on behalf of the International Liaison Committee on Resuscitation Neonatal Life Support Task Force. Maintaining normal temperature immediately after birth in late preterm and term infants. 2022. <u>https://costr.ilcor.org/document/maintaining-normaltemperature-immediately-after-birth-in-late-preterm-and-term-infants-nls-5100</u>. Updated February 14, 2022. Accessed March 9, 2022.

142. Strand ML, Simon WM, Wyllie J, Wyckoff MH, Weiner G. Consensus outcome rating for international neonatal resuscitation guidelines. *Arch Dis Child Fetal Neonatal Ed*.
2020;105::F328–F330. doi: 10.1136/archdischild-2019-316942

143. WHO. Thermal protection of the newborn: a practical guide. *Maternal and Newborn Health/Safe Motherhood Unit.* 1997. https://apps.who.int/iris/bitstream/handle/10665/63986/WHO_RHT_MSM_97.2.pdf. Accessed 8 February 2021.

144. Agrawal N, Das K, Patwal P, Pandita N, Gupta A. Wrapping newborn infants in cloth and newspaper after delivery led to higher temperatures on arrival at the neonatal intensive care unit. *Acta Paediatr.* 2018;107:1335-1338. doi: 10.1111/apa.14211

145. Belsches TC, Tilly AE, Miller TR, Kambeyanda RH, Leadford A, Manasyan A, Chomba E, Ramani M, Ambalavanan N, Carlo WA. Randomized trial of plastic bags to prevent term neonatal hypothermia in a resource-poor setting. *Pediatrics*. 2013;132:e656-661. doi:

10.1542/peds.2013-0172

146. Cardona-Torres LM, Amador-Licona N, Garcia-Campos ML, Guizar-Mendoza JM. Polyethylene wrap for thermoregulation in the preterm infant: a randomized trial. *Indian Pediatrics*. 2012;49:129-132.

147. Carfoot S, Williamson P, Dickson R. A randomised controlled trial in the north of
England examining the effects of skin-to-skin care on breast feeding. *Midwifery*. 2005;21:71-79.
doi: 10.1016/j.midw.2004.09.002

148. Chaput de Saintonge DM, Cross KW, Shathorn MK, Lewis SR, Stothers JK. Hats for the newborn infant. *Br Med J.* 1979;2:570-571. doi: 10.1136/bmj.2.6190.570

149. Christensson K, Siles C, Moreno L, Belaustequi A, De La Fuente P, Lagercrantz H,Puyol P, Winberg J. Temperature, metabolic adaptation and crying in healthy full-term newbornscared for skin-to-skin or in a cot. *Acta Paediatrica*. 1992;81:488-493. doi:

https://doi.org/10.1111/j.1651-2227.1992.tb12280.x

150. Crenshaw JT, Adams ED, Gilder RE, DeButy K, Scheffer KL. Effects of Skin-to-Skin
Care During Cesareans: A Quasiexperimental Feasibility/Pilot Study. *Breastfeed Med*.
2019;14:731-743. doi: 10.1089/bfm.2019.0202

151. Duryea EL, Nelson DB, Wyckoff MH, Grant EN, Tao W, Sadana N, Chalak LF, McIntire DD, Leveno KJ. The impact of ambient operating room temperature on neonatal and maternal hypothermia and associated morbidities: a randomized controlled trial. *Am J Obstet Gynecol.* 2016;214:505.e501-505.e507. doi: 10.1016/j.ajog.2016.01.190

152. Greer PS. Head coverings for newborns under radiant warmers. *JOGNN: journal of obstetric, gynecologic & neonatal nursing*. 1988;17:265-271. doi: 10.1111/j.1552-

6909.1988.tb00438.x

153. Huang X, Chen L, Zhang L. Effects of Paternal Skin-to-Skin Contact in Newborns and Fathers After Cesarean Delivery. *J Perinat Neonatal Nurs*. 2019;33:68-73. doi:

10.1097/jpn.00000000000384

154. Johanson RB, Spencer SA, Rolfe P, Jones P, Malla DS. Effect of post-delivery care on neonatal body temperature. *Acta Paediatr*. 1992;81:859-863. doi: 10.1111/j.1651-2227.1992.tb12123.x

155. KoÇ S, Kaya N. Effect of Kangaroo Care at Birth on Physiological Parameters of Healthy Newborns. *Turkish Journal of Research & Development in Nursing*. 2017;19:1-13.

156. Kollmann M, Aldrian L, Scheuchenegger A, Mautner E, Herzog SA, Urlesberger B, Raggam RB, Lang U, Obermayer-Pietsch B, Klaritsch P. Early skin-to-skin contact after cesarean section: A randomized clinical pilot study. *PLoS One*. 2017;12:e0168783. doi: 10.1371/journal.pone.0168783 157. Lang N, Bromiker R, Arad I. The effect of wool vs. cotton head covering and length of stay with the mother following delivery on infant temperature. *Int J Nurs Stud.* 2004;41:843-846. doi: 10.1016/j.ijnurstu.2004.03.010

158. Leadford AE, Warren JB, Manasyan A, Chomba E, Salas AA, Schelonka R, Carlo WA.
Plastic bags for prevention of hypothermia in preterm and low birth weight infants. *Pediatrics*.
2013;132:e128-134. doi: 10.1542/peds.2012-2030

159. Marín Gabriel MA, Llana Martín I, López Escobar A, Fernández Villalba E, Romero Blanco I, Touza Pol P. Randomized controlled trial of early skin-to-skin contact: effects on the mother and the newborn. *Acta Paediatr*. 2010;99:1630-1634. doi: 10.1111/j.1651-

2227.2009.01597.x

160. Omene JA, Diejomaoh FME, Faal M, Diakparomre MA, Obiaya M. Heat loss in Nigerian newborn infants in the delivery room. *Gynecol Obstet*. 1979;16:300-302. doi: 10.1002/j.1879-3479.1979.tb00450.x

161. Raman S, Shahla A. Temperature Drop in Normal Term Newborn Infants Born at the University Hospital, Kuala Lumpur. *Australian and New Zealand Journal of Obstetrics and Gynaecology*. 1992;32:117-119. doi: <u>https://doi.org/10.1111/j.1479-828X.1992.tb01921.x</u>

162. Ramani M, Choe EA, Major M, Newton R, Mwenechanya M, Travers CP, Chomba E, Ambalavanan N, Carlo WA. Kangaroo mother care for the prevention of neonatal hypothermia: a randomised controlled trial in term neonates. *Arch Dis Child*. 2018;103:492-497. doi: 10.1136/archdischild-2017-313744

163. Safari K, Saeed AA, Hasan SS, Moghaddam-Banaem L. The effect of mother and newborn early skin-to-skin contact on initiation of breastfeeding, newborn temperature and duration of third stage of labor. *Int Breastfeed J*. 2018;13:32. doi: 10.1186/s13006-018-0174-9

164. Shabeer MP, Abiramalatha T, Devakirubai D, Rebekah G, Thomas N. Standard care with plastic bag or portable thermal nest to prevent hypothermia at birth: a three-armed randomized controlled trial. *J Perinatol.* 2018;38:1324-1330. doi: 10.1038/s41372-018-0169-9

165. Srivastava S, Gupta A, Bhatnagar A, Dutta S. Effect of very early skin to skin contact on success at breastfeeding and preventing early hypothermia in neonates. *Indian J Public Health*.
2014;58:22-26. doi: 10.4103/0019-557x.128160

166. Stirparo S, Farcomeni A, Laudani A, Capogna G. Maintaining Neonatal Normothermia during WHO Rec-ommended Skin-to-Skin Contact in the Setting of Cesarean Section under Regional Anesthesia. *Open Journal of Anesthesiology*. 2013;3:186-188. doi:

10.4236/ojanes.2013.33043.

167. Travers CP, Ramani M, Gentle SJ, Schuyler A, Brown C, Dills MM, Davis CB,

Mwenechanya M, Chomba E, Aban I, Manasyan A, Ambalavanan N, Carlo WA. Early Skin-to-Skin Care with a Polyethylene Bag for Neonatal Hypothermia: A Randomized Clinical Trial. *J Pediatr*. 2021;231:55-60.e51. doi: 10.1016/j.jpeds.2020.12.064

168. Walsh RS, Payne A, Cossler NJ, Thompson CL, Bhola M. Safety of immediate skin-toskin contact after vaginal birth in vigorous late preterm neonates - A pilot study. *J Neonatal Perinatal Med.* 2021;14:95-100. doi: 10.3233/npm-190311

169. Agudelo S, Diaz D, Maldonado MJ, Acuna E, Mainero D, Perez O, Perez L, Molina C.
Effect of skin-to-skin contact at birth on early neonatal hospitalization. *Early Hum Dev*.
2020;144:105020. doi: 10.1016/j.earlhumdev.2020.105020

170. Albuquerque RS, Mariani CN, Bersusa AA, Dias VM, Silva MI. Newborns' temperature submitted to radiant heat and to the Top Maternal device at birth. *Rev Lat Am Enfermagem*. 2016;24:e2741. doi: 10.1590/1518-8345.0305.2741

171. Aley-Raz ES, Talmon G, Peniakov M, Hasanein J, Felszer-Fisch C, Weiner SA.

Reducing neonatal hypothermia in premature infants in an israeli neonatal intensive care unit.

Israel Medical Association Journal. 2020;22:476-480.

Andrews C, Whatley C, Smith M, Brayton EC, Simone S, Holmes AV. QualityImprovement Effort to Reduce Hypothermia Among High-Risk Infants on a Mother-Infant Unit. *Pediatrics*. 2018;141:e20171214. doi: 10.1542/peds.2017-1214

173. Datta V, Saili A, Goel S, Sooden A, Singh M, Vaid S, Livesley N. Reducing hypothermia in newborns admitted to a neonatal care unit in a large academic hospital in New Delhi, India. *BMJ Open Qual.* 2017;6:e000183. doi: 10.1136/bmjoq-2017-000183

174. Hill ST, Shronk LK. The effect of early parent-infant contact on newborn body temperature. *JOGN Nurs*. 1979;8:287-290. doi: 10.1111/j.1552-6909.1979.tb00963.x

175. Nissen E, Svensson K, Mbalinda S, Brimdyr K, Waiswa P, Odongkara BM, Hjelmstedt A. A low-cost intervention to promote immediate skin-to-skin contact and improve temperature regulation in Northern Uganda. *African Journal of Midwifery & Women's Health*. 2019;13:1-12. doi: 10.12968/ajmw.2018.0037

176. Patodia J, Mittal J, Sharma V, Verma M, Rathi M, Kumar N, Jain R, Goyal A. Reducing admission hypothermia in newborns at a tertiary care NICU of northern India: A quality improvement study. *J Neonatal Perinatal Med.* 2021;14:277-286. doi: 10.3233/npm-190385
177. Shaw SC, Devgan A, Anila S, Anushree N, Debnath H. Use of Plan-Do-Study-Act cycles to decrease incidence of neonatal hypothermia in the labor room. *Med J Armed Forces India.* 2018;74:126-132. doi: 10.1016/j.mjafi.2017.05.005

178. Sprecher A, Malin K, Finley D, Lembke P, Keller S, Grippe A, Hornung G, Antos N,

Uhing M. Quality Improvement Approach to Reducing Admission Hypothermia Among Preterm and Term Infants. *Hosp Pediatr*. 2021;11:270-276. doi: 10.1542/hpeds.2020-003269

179. Cavallin F, Bonasia T, Yimer DA, Manenti F, Putoto G, Trevisanuto D. Risk factors for mortality among neonates admitted to a special care unit in a low-resource setting. *BMC Pregnancy Childbirth*. 2020;20:722. doi: 10.1186/s12884-020-03429-2

180. Kasdorf E, Perlman JM. Strategies to prevent reperfusion injury to the brain following intrapartum hypoxia-ischemia. *Semin Fetal Neonatal Med.* 2013;18:379-384. doi:

10.1016/j.siny.2013.08.004

181. Conde-Agudelo A, Díaz-Rossello JL. Kangaroo mother care to reduce morbidity and mortality in low birthweight infants. *Cochrane Database Syst Rev.* 2016;2016:Cd002771. doi: 10.1002/14651858.CD002771.pub4

182. Moore ER, Bergman N, Anderson GC, Medley N. Early skin-to-skin contact for mothers and their healthy newborn infants. *The Cochrane database of systematic reviews*.

2016;11:CD003519-CD003519. doi: 10.1002/14651858.CD003519.pub4

183. Gill VR, Liley HG, Erdei C, Sen S, Davidge R, Wright AL, Bora S. Improving the uptake of Kangaroo Mother Care in neonatal units: A narrative review and conceptual framework. *Acta Paediatr*. 2021;110:1407-1416. doi: 10.1111/apa.15705

184. Gupta N, Deierl A, Hills E, Banerjee J. Systematic review confirmed the benefits of early skin-to-skin contact but highlighted lack of studies on very and extremely preterm infants. *Acta Paediatr*. 2021;110:2310-2315. doi: 10.1111/apa.15913

185. Ionio C, Ciuffo G, Landoni M. Parent-Infant Skin-to-Skin Contact and Stress Regulation:
A Systematic Review of the Literature. *Int J Environ Res Public Health*. 2021;18:4695. doi:
10.3390/ijerph18094695

186. Perlman JM, Wyllie J, Kattwinkel J, Atkins DL, Chameides L, Goldsmith JP, Guinsburg R, Hazinski MF, Morley C, Richmond S, Simon WM, Singhal N, Szyld E, Tamura M, Velaphi S; on behalf of the Neonatal Resuscitation Chapter Collaborators. Part 11: Neonatal resuscitation: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. *Circulation*. 2010;122:S516-538. doi: 10.1161/CIRCULATIONAHA.110.971127

187. Wyckoff MH, Wyllie J, Aziz K, de Almeida MF, Fabres J, Fawke J, Guinsburg R, Hosono S, Isayama T, Kapadia VS, Kim HS, Liley HG, McKinlay CJD, Mildenhall L, Perlman JM, Rabi Y, Roehr CC, Schmolzer GM, Szyld E, Trevisanuto D, Velaphi S, Weiner GM; on behalf of the Neonatal Life Support Collaborators. Neonatal Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. *Circulation*. 2020;142:S185-S221. doi:

10.1161/CIR.00000000000895

188. Fawke J, Wyllie JP, Udeata E, Rüdiger M, Ersdal H, Rabi Y, Costa-Nobre DT, de Almeida MF, Davis PG, El-Naggar W, Fabres JG, Foglia EE, Guinsburg R, Hosono S, Isayama T, Kapadia VS, Kawakami MD, Kim HS, Lee HC, Madar RJ, McKinlay CJD, Nakwa FL, Perlman JM, Roehr CC, Schmölzer GM, Sugiura T, Trevisanuto D, Weiner GM, Wyckoff MH, Liley HG. Suctioning clear amniotic fluid at birth. 2022.

https://costr.ilcor.org/document/suctioning-clear-amniotic-fluid-at-birth-nls-5120-previous-596. Updated February 07, 2022. Accessed March 9, 2022. 189. Bancalari A, Diaz V, Araneda H. Effects of pharyngeal suction on the arterial oxygen saturation and heart rate in healthy newborns delivered by elective cesarean section. *Journal of Neonatal-Perinatal Medicine*. 2019;12:271-276. doi: <u>https://dx.doi.org/10.3233/NPM-180137</u>

190. Carrasco M, Martell M, Estol PC. Oronasopharyngeal suction at birth: effects on arterial oxygen saturation. *Journal of Pediatrics*. 1997;130:832-834.

191. Estol PC, Piriz H, Basalo S, Simini F, Grela C. Oro-naso-pharyngeal suction at birth: effects on respiratory adaptation of normal term vaginally born infants. *Journal of Perinatal Medicine*. 1992;20:297-305.

192. Gungor S, Kurt E, Teksoz E, Goktolga U, Ceyhan T, Baser I. Oronasopharyngeal suction versus no suction in normal and term infants delivered by elective cesarean section: a prospective randomized controlled trial. *Gynecologic & Obstetric Investigation*. 2006;61:9-14.

193. Gungor S, Teksoz E, Ceyhan T, Kurt E, Goktolga U, Baser I. Oronasopharyngeal suction versus no suction in normal, term and vaginally born infants: a prospective randomised controlled trial. *Australian & New Zealand Journal of Obstetrics & Gynaecology*. 2005;45:453-456.

194. Kelleher J, Bhat R, Salas AA, Addis D, Mills EC, Mallick H, Tripathi A, Pruitt EP,
Roane C, McNair T, Owen J, Ambalavanan N, Carlo WA. Oronasopharyngeal suction versus
wiping of the mouth and nose at birth: a randomised equivalency trial. *Lancet*. 2013;382:326330. doi: https://dx.doi.org/10.1016/S0140-6736(13)60775-8

195. Modarres Nejad V, Hosseini R, Sarrafi Nejad A, Shafiee G. Effect of oronasopharyngeal suction on arterial oxygen saturation in normal, term infants delivered vaginally: a prospective randomised controlled trial. *Journal of Obstetrics & Gynaecology*. 2014;34:400-402. doi: https://dx.doi.org/10.3109/01443615.2014.897312

196. Takahashi IY. Oronasopharyngeal suction versus no suction at birth in healthy term newborn infants: effects on oxygen saturation and heart rate. *Journal of japan academy of midwifery*. 2009;23:261-270.

197. Waltman PA, Brewer JM, Rogers BP, May WL. Building evidence for practice: a pilot study of newborn bulb suctioning at birth. *Journal of Midwifery & Women's Health*. 2004;49:32-38.

198. Konstantelos D, Ifflaender S, Dinger J, Rudiger M. Suctioning habits in the delivery room and the influence on postnatal adaptation - a video analysis. *Journal of Perinatal Medicine*. 2015;43:777-782. doi: <u>https://dx.doi.org/10.1515/jpm-2014-0188</u>

199. Pocivalnik M, Urlesberger B, Ziehenberger E, Binder C, Schwaberger B, Schmolzer GM, Avian A, Pichler G. Oropharyngeal suctioning in neonates immediately after delivery: influence on cerebral and peripheral tissue oxygenation. *Early Human Development*. 2015;91:153-157. doi: https://dx.doi.org/10.1016/j.earlhumdev.2015.01.005

200. International Liaison Committee on Resuscitation. 2005 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Part 7: Neonatal resuscitation. *Resuscitation*. 2005;67:293-303. doi: 10.1016/j.resuscitation.2005.09.014

201. Kattwinkel J, John K, Susan N, Vinay N, James T. Resuscitation of the newly born infant: An advisory statement from the pediatric working group of the International Liaison Committee on resuscitation. *Circulation (New York, NY)*. 1999;99:1927-1938.

202. Guinsburg R, de Almeida MFB, Finan E, Perlman JM, Wyllie J, Liley HG, Wyckoff MH, Isayama T. Tactile stimulation in newborn infants with inadequate respiration at birth: a systematic review. *Pediatrics*. 2022; doi: 10.1542/peds.2021-055067

203. de Almeida MF, Guinsburg R, Isayama T, Finan E, El-Naggar W, Fabres JG, Fawke J, Foglia EE, Kapadia VS, Kawakami MD, Kim HS, Lee HC, McKinlay CJD, Perlman JM, Rabi Y, Roehr CC, Schmölzer GM, Sugiura T, Trevisanuto D, Weiner GM, Wyllie JP, Liley HG,

Wyckoff MH. Tactile stimulation for resuscitation immediately after birth. 2021.

https://costr.ilcor.org/document/tactile-stimulation-for-resuscitation-immediately-after-birth-nls-

5140-task-force-systematic-review. Updated January 28, 2022. Accessed March 10, 2022.

204. Baik-Schneditz N, Urlesberger B, Schwaberger B, Mileder L, Schmölzer G, Avian A, Pichler G. Tactile stimulation during neonatal transition and its effect on vital parameters in

neonates during neonatal transition. Acta Paediatr. 2018;107:952-957. doi: 10.1111/apa.14239

205. Dekker J, Hooper SB, Martherus T, Cramer SJE, van Geloven N, Te Pas AB. Repetitive versus standard tactile stimulation of preterm infants at birth - A randomized controlled trial. *Resuscitation*. 2018;127:37-43. doi: 10.1016/j.resuscitation.2018.03.030

206. Gaertner VD, Flemmer SA, Lorenz L, Davis PG, Kamlin COF. Physical stimulation of newborn infants in the delivery room. *Arch Dis Child Fetal Neonatal Ed*. 2018;103:F132-f136. doi: 10.1136/archdischild-2016-312311

207. Katheria A, Poeltler D, Durham J, Steen J, Rich W, Arnell K, Maldonado M, Cousins L,
Finer N. Neonatal Resuscitation with an Intact Cord: A Randomized Clinical Trial. *J Pediatr*.
2016;178:75-80.e73. doi: 10.1016/j.jpeds.2016.07.053

208. Pietravalle A, Cavallin F, Opocher A, Madella S, Cavicchiolo ME, Pizzol D, Putoto G,
Trevisanuto D. Neonatal tactile stimulation at birth in a low-resource setting. *BMC Pediatr*.
2018;18:306. doi: 10.1186/s12887-018-1279-4

209. van Henten TMA, Dekker J, Te Pas AB, Zivanovic S, Hooper SB, Roehr CC. Tactile stimulation in the delivery room: do we practice what we preach? *Arch Dis Child Fetal Neonatal Ed.* 2019;104:F661-f662. doi: 10.1136/archdischild-2018-316344

210. Cavallin F, Lochoro P, Ictho J, Nsubuga JB, Ameo J, Putoto G, Trevisanuto D. Back rubs or foot flicks for neonatal stimulation at birth in a low-resource setting: A randomized controlled trial. *Resuscitation*. 2021;167:137-143. doi: 10.1016/j.resuscitation.2021.08.028

211. Ersdal HL, Mduma E, Svensen E, Perlman JM. Early initiation of basic resuscitation interventions including face mask ventilation may reduce birth asphyxia related mortality in low-income countries: a prospective descriptive observational study. *Resuscitation*. 2012;83:869-873. doi: 10.1016/j.resuscitation.2011.12.011

Msemo G, Massawe A, Mmbando D, Rusibamayila N, Manji K, Kidanto HL,
Mwizamuholya D, Ringia P, Ersdal HL, Perlman J. Newborn mortality and fresh stillbirth rates
in Tanzania after helping babies breathe training. *Pediatrics*. 2013;131:e353-360. doi:
10.1542/peds.2012-1795

213. Kc A, Peven K, Ameen S, Msemo G, Basnet O, Ruysen H, Zaman SB, Mkony M, Sunny AK, Rahman QS, Shabani J, Bastola RC, Assenga E, Kc NP, El Arifeen S, Kija E, Malla H, Kong S, Singhal N, Niermeyer S, Lincetto O, Day LT, Lawn JE. Neonatal resuscitation: EN-BIRTH multi-country validation study. *BMC Pregnancy Childbirth*. 2021;21:235. doi: 10.1186/s12884-020-03422-9

214. Kalaniti K, Chacko A, Daspal S. Tactile Stimulation During Newborn Resuscitation: The Good, the Bad, and *The Ugly. Oman Med J.* 2018;33:84-85. doi: 10.5001/omj.2018.18
215. Kapadia VS, Kawakami MD, Strand M, Gately C, Costa-Nobre DT, Davis PG, de Almeida MF, El-Naggar W, Fabres JG, Fawke J, Finan E, Foglia EE, Guinsburg R, Hosono S,

Isayama T, Kim HS, Madar RJ, McKinlay CJD, Nakwa FL, Perlman JM, Rabi Y, Roehr CC, Rüdiger M, Schmölzer GM, Sugiura T, Trevisanuto D, Weiner GM, Wyllie JP, Liley HG, Wyckoff MH. Methods of heart rate monitoring in the delivery room and neonatal outcomes. 2022. <u>https://costr.ilcor.org/document/delivery-room-heart-rate-monitoring-to-improveoutcomes-nls-5201</u>. Updated February 03, 2022. Accessed March 10, 2022.

216. Abbey NV, Mashruwala V, Weydig HM, Steven Brown L, Ramon EL, Ibrahim J, Mir IN, Wyckoff MH, Kapadia V. Electrocardiogram for heart rate evaluation during preterm resuscitation at birth: a randomized trial. *Pediatr Res*. 2021:1-7. doi: 10.1038/s41390-021-01731-

217. Katheria A, Arnell K, Brown M, Hassen K, Maldonado M, Rich W, Finer N. A pilot randomized controlled trial of EKG for neonatal resuscitation. *PLoS One*. 2017;12:e0187730. doi: 10.1371/journal.pone.0187730

218. Shah BA, Wlodaver AG, Escobedo MB, Ahmed ST, Blunt MH, Anderson MP, Szyld EG. Impact of electronic cardiac (ECG) monitoring on delivery room resuscitation and neonatal outcomes. *Resuscitation*. 2019;143:10-16. doi: 10.1016/j.resuscitation.2019.07.031

219. Shah BA, Fabres JG, Szyld EG, Leone TA, Schmölzer GM, de Almeida MF, Costa-Nobre DT, Davis PG, El-Naggar W, Fawke J, Foglia EE, Guinsburg R, Isayama T, Kapadia VS, Kawakami MD, Kim HS, Lee HC, Madar RJ, McKinlay CJD, Nakwa FL, Perlman JM, Rabi Y, Roehr CC, Rüdiger M, Sugiura T, Trevisanuto D, Weiner GM, Wyllie JP, Liley HG, Wyckoff MH. Continuous positive airway pressure versus no continuous positive airway pressure for term and late preterm respiratory distress in the delivery room. 2022.

https://costr.ilcor.org/document/continuous-positive-airway-pressure-cpap-versus-no-cpap-for-

term-respiratory-distress-in-delivery-room-nls-5312. Updated January 31, 2022. Accessed March 10, 2022.

220. Celebi MY, Alan S, Kahvecioglu D, Cakir U, Yildiz D, Erdeve O, Arsan S, Atasay B. Impact of Prophylactic Continuous Positive Airway Pressure on Transient Tachypnea of the Newborn and Neonatal Intensive Care Admission in Newborns Delivered by Elective Cesarean Section. *Am J Perinatol.* 2016;33:99-106. doi: 10.1055/s-0035-1560041

221. Osman AM, El-Farrash RA, Mohammed EH. Early rescue Neopuff for infants with transient tachypnea of newborn: a randomized controlled trial. *J Matern Fetal Neonatal Med*. 2019;32:597-603. doi: 10.1080/14767058.2017.1387531

222. Hishikawa K, Fujinaga H, Fujiwara T, Goishi K, Kaneshige M, Sago H, Ito Y.
Respiratory Stabilization after Delivery in Term Infants after the Update of the Japan
Resuscitation Council Guidelines in 2010. *Neonatology*. 2016;110:1-7. doi: 10.1159/000443948
223. Hishikawa K, Goishi K, Fujiwara T, Kaneshige M, Ito Y, Sago H. Pulmonary air leak
associated with CPAP at term birth resuscitation. *Arch Dis Child Fetal Neonatal Ed*.
2015;100:F382-387. doi: 10.1136/archdischild-2014-307891

224. Smithhart W, Wyckoff MH, Kapadia V, Jaleel M, Kakkilaya V, Brown LS, Nelson DB, Brion LP. Delivery Room Continuous Positive Airway Pressure and Pneumothorax. *Pediatrics*. 2019;144:e20190756. doi: 10.1542/peds.2019-0756

225. Yamada NK, McKinlay CJD, Quek BH, Rabi Y, Costa-Nobre DT, de Almeida MF, Davis PG, El-Naggar W, Fabres JG, Fawke J, Foglia EE, Guinsburg R, Hosono S, Isayama T, Kapadia VS, Kawakami MD, Kim HS, Lee H, Liley HG, Madar RJ, Nakwa FL, Perlman JM, Roehr CC, Rüdiger M, Schmölzer GM, Sugiura T, Trevisanuto D, Wyckoff MH, Wyllie JP, Weiner GM. Supraglottic airways for neonatal resuscitation. 2022. https://costr.ilcor.org/document/supraglottic-airways-for-neonatal-resuscitation-nls-618. Updated February 04, 2022. Accessed March 10, 2022.

226. Feroze F, Khuwaja A, Masood N, Malik FI. Neonatal resuscitation; the use of laryngeal mask airway. *Professional Medical Journal-Quarterly*. 2008;15:148-152.

227. Pejovic NJ, Myrnerts Höök S, Byamugisha J, Alfvén T, Lubulwa C, Cavallin F,
Nankunda J, Ersdal H, Blennow M, Trevisanuto D, Tylleskär T. A Randomized Trial of
Laryngeal Mask Airway in Neonatal Resuscitation. *N Engl J Med.* 2020;383:2138-2147. doi:
10.1056/NEJMoa2005333

228. Pejovic NJ, Trevisanuto D, Lubulwa C, Myrnerts Höök S, Cavallin F, Byamugisha J, Nankunda J, Tylleskär T. Neonatal resuscitation using a laryngeal mask airway: a randomised trial in Uganda. *Arch Dis Child*. 2018;103:255-260. doi: 10.1136/archdischild-2017-312934

229. Singh R. Controlled trial to evaluate the use of LMA for neonatal resuscitation. J Anaesth Clin Pharmacol . 2005;21:303–306. *Journal of Anaesthesiology Clinical Pharmacology*. 2005;J Anaesth Clin Pharmacol 2005; 21(3) : 303-306:303-306.

230. Trevisanuto D, Cavallin F, Nguyen LN, Nguyen TV, Tran LD, Tran CD, Doglioni N,
Micaglio M, Moccia L. Supreme Laryngeal Mask Airway versus Face Mask during Neonatal
Resuscitation: A Randomized Controlled Trial. *J Pediatr*. 2015;167:286-291.e281. doi:
10.1016/j.jpeds.2015.04.051

Zhu XY, Lin BC, Zhang QS, Ye HM, Yu RJ. A prospective evaluation of the efficacy of the laryngeal mask airway during neonatal resuscitation. *Resuscitation*. 2011;82:1405-1409. doi: 10.1016/j.resuscitation.2011.06.010

232. Trevisanuto D, Micaglio M, Pitton M, Magarotto M, Piva D, Zanardo V. Laryngeal mask airway: is the management of neonates requiring positive pressure ventilation at birth changing? *Resuscitation*. 2004;62:151-157. doi: 10.1016/j.resuscitation.2004.03.006

Zanardo V, Weiner G, Micaglio M, Doglioni N, Buzzacchero R, Trevisanuto D. Delivery room resuscitation of near-term infants: role of the laryngeal mask airway. *Resuscitation*.
2010;81:327-330. doi: 10.1016/j.resuscitation.2009.11.005

234. Pejovic NJ, Cavallin F, Mpamize A, Lubulwa C, Höök SM, Byamugisha J, Nankunda J, Tylleskär T, Trevisanuto D. Respiratory monitoring during neonatal resuscitation using a supraglottic airway device vs. a face mask. *Resuscitation*. 2021:107-113. doi:

10.1016/j.resuscitation.2021.10.025

235. Schmölzer GM, Morley CJ, Wong C, Dawson JA, Kamlin COF, Donath SM, Hooper SB, Davis PG. Respiratory function monitor guidance of mask ventilation in the delivery room: A feasibility study. *The Journal of Pediatrics*. 2012;160:377-381.e372. doi:

https://doi.org/10.1016/j.jpeds.2011.09.017

236. Fuerch JH, Rabi Y, Thio M, Halamek LP, Costa-Nobre DT, de Almeida MF, Davis PG, El-Naggar W, Fabres JG, Fawke J, Nakwa FL, Foglia EE, Guinsburg R, Hosono S, Isayama T, Kapadia VS, Kawakami MD, Kim HS, Lee H, Madar RJ, McKinlay C, Perlman JM, Roehr CC, Rüdiger M, Schmölzer GM, Sugiura T, Trevisanuto D, Weiner GM, Wyllie JP, Liley HG, Wyckoff MH. Respiratory function monitoring. 2022.

https://costr.ilcor.org/document/respiratory-function-monitoring-for-neonatal-resuscitation-nls-

806. Updated February 08, 2022. Accessed March 9, 2022.

237. van Zanten HA, K LAMK, van Zwet EW, van Vonderen JJ, Omar FKC, Springer L,

Lista G, Cavigioli F, Vento M, Nunez-Ramiro A, Oberthuer A, Kribs A, Kuester H, Horn S,

Weinberg DD, Foglia EE, Morley CJ, Davis PG, Te Pas AB. A multi-centre randomised controlled trial of respiratory function monitoring during stabilisation of very preterm infants at birth. *Resuscitation*. 2021:317-325. doi: 10.1016/j.resuscitation.2021.07.012

Zeballos Sarrato G, Sánchez Luna M, Zeballos Sarrato S, Pérez Pérez A, Pescador
Chamorro I, Bellón Cano JM. New Strategies of Pulmonary Protection of Preterm Infants in the
Delivery Room with the Respiratory Function Monitoring. *Am J Perinatol.* 2019;36:1368-1376.
doi: 10.1055/s-0038-1676828

239. Andersen LW, Holmberg MJ, Berg KM, Donnino MW, Granfeldt A. In-Hospital Cardiac Arrest: A Review. *JAMA*. 2019;321:1200-1210. doi: 10.1001/jama.2019.1696

240. Lauridsen KG, Djärv T, Couper K, Tjissen J, Breckwoldt J, Greif R; on behalf of the International Liaison Committee on Resuscitation Education, Implementation, and Teams Task Force. Pre-arrest prediction of survival following in-hospital cardiac arrest. 2022.

https://costr.ilcor.org/document/pre-arrest-prediction-of-survival-following-in-hospital-cardiacarrest. Updated March 04, 2022. Accessed March 15, 2022.

241. Bowker L, Stewart K. Predicting unsuccessful cardiopulmonary resuscitation (CPR): a comparison of three morbidity scores. *Resuscitation*. 1999;40:89-95. doi: 10.1016/s0300-9572(99)00008-8

242. Cho YJ, Kim YJ, Kim MY, Shin YJ, Lee J, Choi E, Hong S-B, Huh JW, Yang WS, Kim WY. Validation of the Good Outcome Following Attempted Resuscitation (GO-FAR) score in an East Asian population. *Resuscitation*. 2020;150:36-40. doi:

10.1016/j.resuscitation.2020.02.035

243. Cohn EB, Lefevre F, Yarnold PR, Arron MJ, Martin GJ. Predicting survival from inhospital CPR: Meta-analysis and validation of a prediction model. *Journal of General Internal Medicine*. 1993;8:347-353.

244. Ebell MH. Artificial neural networks for predicting failure to survive following inhospital cardiopulmonary resuscitation. *The Journal of family practice*. 1993;36:297-303.

245. Ebell MH, Afonso AM, Geocadin RG. Prediction of survival to discharge following cardiopulmonary resuscitation using classification and regression trees. *Critical care medicine*.
2013;41:2688-2697. doi: 10.1097/CCM.0b013e31829a708c

246. Ebell MH, Jang W, Shen Y, Geocadin RG. Development and validation of the Good Outcome Following Attempted Resuscitation (GO-FAR) score to predict neurologically intact survival after in-hospital cardiopulmonary resuscitation. *JAMA internal medicine*. 2013;173:1872-1878. doi: 10.1001/jamainternmed.2013.10037

247. Ebell MH, Kruse JA, Smith M, Novak J, Drader-Wilcox J. Failure of three decision rules to predict the outcome of in-hospital cardiopulmonary resuscitation. *Medical decision making : an international journal of the Society for Medical Decision Making*. 1997;17:171-177. doi:

10.1177/0272989X9701700207

248. George ALJ, Folk BP, Crecelius PL, Campbell WB. Pre-arrest morbidity and other correlates of survival after in-hospital cardiopulmonary arrest. *The American journal of medicine*. 1989;87:28-34. doi: 10.1016/s0002-9343(89)80479-6

249. George N, Thai TN, Chan PS, Ebell MH. Predicting the probability of survival with mild or moderate neurological dysfunction after in-hospital cardiopulmonary arrest: The GO-FAR 2 score. *Resuscitation*. 2020;146:162-169. doi: 10.1016/j.resuscitation.2019.12.001

250. Guilbault RWR, Ohlsson MA, Afonso AM, Ebell MH. External Validation of Two Classification and Regression Tree Models to Predict the Outcome of Inpatient Cardiopulmonary Resuscitation. *Journal of intensive care medicine*. 2017;32:333-338. doi:

10.1177/0885066616686924

251. Haegdorens F, Monsieurs KG, De Meester K, Van Bogaert P. The optimal threshold for prompt clinical review: An external validation study of the national early warning score. *Journal of clinical nursing*. 2020;29:4594-4603. doi: 10.1111/jocn.15493

252. Hong S-I, Kim Y-J, Cho YJ, Huh JW, Hong S-B, Kim WY. Predictive value of pre-arrest albumin level with GO-FAR score in patients with in-hospital cardiac arrest. *Scientific reports*. 2021;11:10631. doi: 10.1038/s41598-021-90203-9

253. Ibitoye SE, Rawlinson S, Cavanagh A, Phillips V, Shipway DJH. Frailty status predicts futility of cardiopulmonary resuscitation in older adults. *Age and Ageing*. 2021;50:147-152. doi: 10.1093/ageing/afaa104

254. Limpawattana P, Suraditnan C, Aungsakul W, Panitchote A, Patjanasoontorn B, Phunmanee A, Pittayawattanachai N. A comparison of the ability of morbidity scores to predict unsuccessful cardiopulmonary resuscitation in thailand. *Journal of the Medical Association of Thailand*. 2018;101:1231-1236.

255. Ohlsson MA, Kennedy LM, Ebell MH, Juhlin T, Melander O. Validation of the good outcome following attempted resuscitation score on in-hospital cardiac arrest in southern Sweden. *International journal of cardiology*. 2016;221:294-297. doi:

10.1016/j.ijcard.2016.06.146

256. Ohlsson MA, Kennedy LM, Juhlin T, Melander O. Evaluation of pre-arrest morbidity score and prognosis after resuscitation score and other clinical variables associated with in-

hospital cardiac arrest in southern Sweden. *Resuscitation*. 2014;85:1370-1374. doi: 10.1016/j.resuscitation.2014.07.009

257. O'Keeffe S, Ebell MH. Prediction of failure to survive following in-hospital cardiopulmonary resuscitation: comparison of two predictive instruments. *Resuscitation*. 1994;28:21-25. doi: 10.1016/0300-9572(94)90050-7

258. Piscator E, Goransson K, Bruchfeld S, Hammar U, El Gharbi S, Ebell M, Herlitz J, Djarv T. Predicting neurologically intact survival after in-hospital cardiac arrest-external validation of the Good Outcome Following Attempted Resuscitation score. *Resuscitation*. 2018;128:63-69.

doi: 10.1016/j.resuscitation.2018.04.035

259. Piscator E, Goransson K, Forsberg S, Bottai M, Ebell M, Herlitz J, Djarv T. Prearrest prediction of favourable neurological survival following in-hospital cardiac arrest: The Prediction of outcome for In-Hospital Cardiac Arrest (PIHCA) score. *Resuscitation*.

2019;143:92-99. doi: 10.1016/j.resuscitation.2019.08.010

260. Roberts D, Djärv T. Preceding national early warnings scores among in-hospital cardiac arrests and their impact on survival. *The American journal of emergency medicine*.

2017;35:1601-1606. doi: 10.1016/j.ajem.2017.04.072

261. Rubins JB, Kinzie SD, Rubins DM. Predicting Outcomes of In-Hospital Cardiac Arrest: Retrospective US Validation of the Good Outcome Following Attempted Resuscitation Score. *Journal of general internal medicine*. 2019;34:2530-2535. doi: 10.1007/s11606-019-05314-x

262. Stark AP, Maciel RC, Sheppard W, Sacks G, Hines OJ. An early warning score predicts risk of death after inhospital cardiopulmonary arrest in surgical patients. *American Surgeon*.
2015;81:916-921. doi: 10.1177/000313481508101001

Wyckoff 202

263. Thai TN, Ebell MH. Prospective validation of the Good Outcome Following Attempted Resuscitation (GO-FAR) score for in-hospital cardiac arrest prognosis. *Resuscitation*.
2019;140:2-8. doi: 10.1016/j.resuscitation.2019.05.002

264. Bhanji F, Finn JC, Lockey A, Monsieurs K, Frengley R, Iwami T, Lang E, Ma MH,
Mancini ME, McNeil MA, Greif R, Billi JE, Nadkarni VM, Bigham B; Education,
Implementation, and Teams Chapter Collaborators. Part 8: Education, Implementation, and
Teams: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency
Cardiovascular Care Science With Treatment Recommendations. *Circulation*. 2015;132:S242268. doi: 10.1161/CIR.00000000000277

265. Finn JC, Bhanji F, Lockey A, Monsieurs K, Frengley R, Iwami T, Lang E, Ma MH, Mancini ME, McNeil MA, Greif R, Billi JE, Nadkarni VM, Bigham B; Education, Implementation, and Teams Chapter Collaborators. Part 8: Education, implementation, and teams: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. *Resuscitation*. 2015;95:e203-224. doi: 10.1016/j.resuscitation.2015.07.046

266. Cartledge S, Bray JE, Leary M, Stub D, Finn J. A systematic review of basic life support training targeted to family members of high-risk cardiac patients. *Resuscitation*. 2016;105:70-78. doi: 10.1016/j.resuscitation.2016.04.028

267. Cartledge S, Feldman S, Bray JE, Stub D, Finn J. Understanding patients and spouses experiences of patient education following a cardiac event and eliciting attitudes and preferences towards incorporating cardiopulmonary resuscitation training: A qualitative study. *J Adv Nurs*. 2018;74:1157-1169. doi: 10.1111/jan.13522

Wyckoff 203

268. Cartledge S, Finn J, Smith K, Straney L, Stub D, Bray J. A cross-sectional survey examining cardiopulmonary resuscitation training in households with heart disease. *Collegian*. 2019;26:366-372. doi: 10.1016/j.colegn.2018.09.004

269. Bray J, Cartledge S, Doherty Z, Leary M, Finn J, Bhanji F, Greif R; on behalf of the International Liaison Committee on Resuscitation Education, Implementation, and Teams Task Force. Basic life support training for likely rescuers of adults and children at high-risk of cardiac arrest. <u>https://costr.ilcor.org/document/bls-training-in-high-risk-groups</u>. Updated March 04, 2022. Accessed March 15, 2022.

Bardy GH, Lee KL, Mark DB, Poole JE, Toff WD, Tonkin AM, Smith W, Dorian P,
Packer DL, White RD, Longstreth WT, Jr., Anderson J, Johnson G, Bischoff E, Yallop JJ,
McNulty S, Ray LD, Clapp-Channing NE, Rosenberg Y, Schron EB; on behalf of the HAT
Investigators. Home use of automated external defibrillators for sudden cardiac arrest. *N Engl J Med.* 2008;358:1793-1804. doi: 10.1056/NEJMoa0801651

271. Barr GC, Jr., Rupp VA, Hamilton KM, Worrilow CC, Reed JF, 3rd, Friel KS, Dusza SW, Greenberg MR. Training mothers in infant cardiopulmonary resuscitation with an instructional DVD and manikin. *J Am Osteopath Assoc*. 2013;113:538-545. doi: 10.7556/jaoa.2013.005

272. Blewer AL, Leary M, Esposito EC, Gonzalez M, Riegel B, Bobrow BJ, Abella BS.
Continuous chest compression cardiopulmonary resuscitation training promotes rescuer self-confidence and increased secondary training: a hospital-based randomized controlled trial*. *Crit Care Med.* 2012;40:787-792. doi: 10.1097/CCM.0b013e318236f2ca

273. Brannon TS, White LA, Kilcrease JN, Richard LD, Spillers JG, Phelps CL. Use of instructional video to prepare parents for learning infant cardiopulmonary resuscitation. *Proc* (*Bayl Univ Med Cent*). 2009;22:133-137. doi: 10.1080/08998280.2009.11928493

274. Dracup K, Doering LV, Moser DK, Evangelista L. Retention and use of cardiopulmonary resuscitation skills in parents of infants at risk for cardiopulmonary arrest. *Pediatr Nurs*. 1998;24:219-225; quiz 226-217.

275. Dracup K, Guzy PM, Taylor SE, Barry J. Cardiopulmonary resuscitation (CPR) training.
Consequences for family members of high-risk cardiac patients. *Arch Intern Med.*1986;146:1757-1761. doi: 10.1001/archinte.146.9.1757

276. Dracup K, Heaney DM, Taylor SE, Guzy PM, Breu C. Can family members of high-risk cardiac patients learn cardiopulmonary resuscitation? *Arch Intern Med.* 1989;149:61-64.

277. Dracup K, Moser DK, Doering LV, Guzy PM. Comparison of cardiopulmonary resuscitation training methods for parents of infants at high risk for cardiopulmonary arrest. *Ann Emerg Med.* 1998;32:170-177. doi: 10.1016/s0196-0644(98)70133-7

278. Dracup K, Moser DK, Guzy PM, Taylor SE, Marsden C. Is cardiopulmonary
resuscitation training deleterious for family members of cardiac patients? *Am J Public Health*.
1994;84:116-118. doi: 10.2105/ajph.84.1.116

279. Dracup K, Moser DK, Doering LV, Guzy PM, Juarbe T. A controlled trial of cardiopulmonary resuscitation training for ethnically diverse parents of infants at high risk for cardiopulmonary arrest. *Crit Care Med.* 2000;28:3289-3295. doi: 10.1097/00003246-200009000-00029

280. Eisenberg MS, Moore J, Cummins RO, Andresen E, Litwin PE, Hallstrom AP, Hearne T. Use of the automatic external defibrillator in homes of survivors of out-of-hospital ventricular fibrillation. *Am J Cardiol.* 1989;63:443-446. doi: 10.1016/0002-9149(89)90316-0

281. Greenberg MR, Barr GC, Jr., Rupp VA, Patel N, Weaver KR, Hamilton K, Reed JF, 3rd. Cardiopulmonary resuscitation prescription program: a pilot randomized comparator trial. *J Emerg Med.* 2012;43:166-171. doi: 10.1016/j.jemermed.2011.05.078

282. Haugk M, Robak O, Sterz F, Uray T, Kliegel A, Losert H, Holzer M, Herkner H, Laggner AN, Domanovits H. High acceptance of a home AED programme by survivors of sudden cardiac arrest and their families. *Resuscitation*. 2006;70:263-274. doi:

10.1016/j.resuscitation.2006.03.010

283. Higgins SS, Hardy CE, Higashino SM. Should parents of children with congenital heart disease and life-threatening dysrhythmias be taught cardiopulmonary resuscitation? *Pediatrics*. 1989;84:1102-1104.

284. Khan JA, Shafquat A, Kundi A. Basic life support skills: assessment and education of spouse and first degree relatives of patients with coronary disease. *J Coll Physicians Surg Pak*. 2010;20:299-302. doi: 05.2010/JCPSP.299302

285. Kliegel A, Scheinecker W, Sterz F, Eisenburger P, Holzer M, Laggner AN. The attitudes of cardiac arrest survivors and their family members towards CPR courses. *Resuscitation*. 2000;47:147-154. doi: 10.1016/s0300-9572(00)00214-8

286. Knight LJ, Wintch S, Nichols A, Arnolde V, Schroeder AR. Saving a life after discharge: CPR training for parents of high-risk children. *J Healthc Qual*. 2013;35:9-16; quiz17. doi: 10.1111/j.1945-1474.2012.00221.x

287. Komelasky AL. The effect of home nursing visits on parental anxiety and CPR knowledge retention of parents of apnea-monitored infants. *J Pediatr Nurs*. 1990;5:387-392.
288. Komelasky AL, Bond BS. The effect of two forms of learning reinforcement upon parental retention of CPR skills. *Pediatr Nurs*. 1993;19:96-98, 77.

289. Long CA. Teaching parents infant CPR--lecture or audiovisual tape? *MCN Am J Matern Child Nurs*. 1992;17:30-32. doi: 10.1097/00005721-199201000-00011

290. McDaniel CM, Berry VA, Haines DE, DiMarco JP. Automatic external defibrillation of patients after myocardial infarction by family members: practical aspects and psychological impact of training. *Pacing Clin Electrophysiol*. 1988;11:2029-2034. doi: 10.1111/j.1540-8159.1988.tb06345.x

291. McLauchlan CA, Ward A, Murphy NM, Griffith MJ, Skinner DV, Camm AJ.
Resuscitation training for cardiac patients and their relatives--its effect on anxiety. *Resuscitation*.
1992;24:7-11. doi: 10.1016/0300-9572(92)90168-c

292. Messmer P, Meehan R, Gilliam N, White S, Donaldson P. Teaching infant CPR to mothers of cocaine-positive infants. *J Contin Educ Nurs*. 1993;24:217-220.

293. Moore JE, Eisenberg MS, Cummins RO, Hallstrom A, Litwin P, Carter W. Lay person use of automatic external defibrillation. *Ann Emerg Med.* 1987;16:669-672. doi: 10.1016/s0196-0644(87)80068-9

294. Moser DK, Dracup K, Doering LV. Effect of cardiopulmonary resuscitation training for parents of high-risk neonates on perceived anxiety, control, and burden. *Heart Lung*. 1999;28:326-333. doi: 10.1053/hl.1999.v28.a101053

295. Pane GA, Salness KA. Targeted recruitment of senior citizens and cardiac patients to a mass CPR training course. *Ann Emerg Med.* 1989;18:152-154. doi: 10.1016/s0196-0644(89)80105-2

296. Pierick TA, Van Waning N, Patel SS, Atkins DL. Self-instructional CPR training for parents of high risk infants. *Resuscitation*. 2012;83:1140-1144. doi:

10.1016/j.resuscitation.2012.02.007

297. Sanna T, Fedele F, Genuini I, Puglisi A, Azzolini P, Altamura G, Lobianco F, Ruzzolini M, Perna F, Mico M, Roscio G, Mottironi P, Saraceni C, Pistolese M, Bellocci F. Home defibrillation: a feasibility study in myocardial infarction survivors at intermediate risk of sudden death. *Am Heart J*. 2006;152:685 e681-687. doi: 10.1016/j.ahj.2006.07.008

298. Schneider L, Sterz F, Haugk M, Eisenburger P, Scheinecker W, Kliegel A, Laggner AN.
CPR courses and semi-automatic defibrillators--life saving in cardiac arrest? *Resuscitation*.
2004;63:295-303. doi: 10.1016/j.resuscitation.2004.06.005

299. Sharieff GQ, Hostetter S, Silva PD. Foster parents of medically fragile children can improve their BLS scores: results of a demonstration project. *Pediatr Emerg Care*. 2001;17:93-95. doi: 10.1097/00006565-200104000-00003

300. Sigsbee M, Geden EA. Effects of anxiety on family members of patients with cardiac disease learning cardiopulmonary resuscitation. *Heart Lung*. 1990;19:662-665.

301. Wright S, Norton C, Kesten K. Retention of infant CPR instruction by parents. *Pediatr Nurs*. 1989;15:37-41, 44.

302. Ataiants J, Mazzella S, Roth AM, Sell RL, Robinson LF, Lankenau SE. Overdose response among trained and untrained women with a history of illicit drug use: a mixed-methods examination. *Drugs (Abingdon Engl)*. 2021;28:328-339. doi: 10.1080/09687637.2020.1818691
303. Blewer AL, Putt ME, Becker LB, Riegel BJ, Li J, Leary M, Shea JA, Kirkpatrick JN, Berg RA, Nadkarni VM, Groeneveld PW, Abella BS; on behalf of the CHIP Study Group.
Video-Only Cardiopulmonary Resuscitation Education for High-Risk Families Before Hospital Discharge: A Multicenter Pragmatic Trial. *Circ Cardiovasc Qual Outcomes*. 2016;9:740-748. doi: 10.1161/CIRCOUTCOMES.116.002493

304. Blewer AL, Putt ME, McGovern SK, Murray AD, Leary M, Riegel B, Shea JA, Berg RA, Asch DA, Viera AJ, Merchant RM, Nadkarni VM, Abella BS; on behalf of the CHIP Study Group. A pragmatic randomized trial of cardiopulmonary resuscitation training for families of cardiac patients before hospital discharge using a mobile application. *Resuscitation*.

2020;152:28-35. doi: 10.1016/j.resuscitation.2020.04.026

305. Cartledge S, Finn J, Bray JE, Case R, Barker L, Missen D, Shaw J, Stub D. Incorporating cardiopulmonary resuscitation training into a cardiac rehabilitation programme: A feasibility study. *Eur J Cardiovasc Nurs*. 2018;17:148-158. doi: 10.1177/1474515117721010

306. Gonzalez-Salvado V, Abelairas-Gomez C, Gude F, Pena-Gil C, Neiro-Rey C, Gonzalez-Juanatey JR, Rodriguez-Nunez A. Targeting relatives: Impact of a cardiac rehabilitation programme including basic life support training on their skills and attitudes. *Eur J Prev Cardiol*. 2019;26:795-805. doi: 10.1177/2047487319830190

307. Han KS, Lee JS, Kim SJ, Lee SW. Targeted cardiopulmonary resuscitation training focused on the family members of high-risk patients at a regional medical center: A comparison between family members of high-risk and no-risk patients. *Ulus Travma Acil Cerrahi Derg*. 2018;24:224-233. doi: 10.5505/tjtes.2017.01493

308. Ikeda DJ, Buckler DG, Li J, Agarwal AK, Di Taranti LJ, Kurtz J, Reis RD, Leary M, Abella BS, Blewer AL. Dissemination of CPR video self-instruction materials to secondary trainees: Results from a hospital-based CPR education trial. *Resuscitation*. 2016;100:45-50. doi: 10.1016/j.resuscitation.2015.12.016

309. Kim HS, Kim HJ, Suh EE. The Effect of Patient-centered CPR Education for Family Caregivers of Patients with Cardiovascular Diseases. *J Korean Acad Nurs*. 2016;46:463-474. doi: 10.4040/jkan.2016.46.3.463

Michel J, Hofbeck M, Neunhoeffer F, Muller M, Heimberg E. Evaluation of a Multimodal Resuscitation Program and Comparison of Mouth-to-Mouth and Bag-Mask Ventilation by Relatives of Children With Chronic Diseases. *Pediatr Crit Care Med*.
2020;21:e114-e120. doi: 10.1097/PCC.00000000002204

311. Raaj N, Lakshmanan G, Baidya D, Velayoudam D, Bhoi S. A Comparative Study to Evaluate the Effectiveness of Mannequin Demonstration Versus Video Teaching Programme on Basic Life Support to the Family Members of Adult Patients at High Risk of Cardiopulmonary Arrest. *International Journal of Nursing Education*. 2016;8:142-147. doi: 10.5958/0974-9357.2016.00141.0

312. Tomatis Souverbielle C, Gonzalez-Martinez F, Gonzalez-Sanchez MI, Carron M, Guerra Miguez L, Butragueno L, Gonzalo H, Villalba T, Perez Moreno J, Toledo B, RodriguezFernandez R. Strengthening the Chain of Survival: Cardiopulmonary Resuscitation Workshop for Caregivers of Children at Risk. *Pediatr Qual Saf.* 2019;4:e141. doi:

10.1097/pq9.000000000000141

313. Varalakshmi E. Assess the effectiveness of training module on knowledge and skill in Basic Life Support (BLS) among the care givers of clients. *International Journal of Pharma and Bio Sciences*. 2016;7:B574-B578.

314. Lockey A, Patocka C, Lauridsen K, Finn J, Greif T; on behalf of the International Liaison Committee on Resuscitation Education, Implementation, and Teams Task Force. Are cardiac arrest patient outcomes improved as a result of a member of the resuscitation team attending an accredited advanced life support course. 2022. <u>https://costr.ilcor.org/document/are-cardiac-arrest-patient-outcomes-improved-as-a-result-of-a-member-of-the-resuscitation-team-having-</u>

<u>attended-an-accredited-advanced-life-support-course-eit-4000</u>. Updated March 14, 2022. Accessed March 15, 2022.

315. Pareek M, Parmar V, Badheka J, Lodh N. Study of the impact of training of registered nurses in cardiopulmonary resuscitation in a tertiary care centre on patient mortality. *Indian journal of anaesthesia*. 2018;62:381.

316. Carlo WA, Goudar SS, Jehan I, Chomba E, Tshefu A, Garces A, Parida S, Althabe F, McClure EM, Derman RJ. High mortality rates for very low birth weight infants in developing countries despite training. *Pediatrics*. 2010;126:e1072-e1080.

317. Carlo WA, Goudar SS, Jehan I, Chomba E, Tshefu A, Garces A, Sailajanandan P, Althabe F, McClure EM, Derman RJ. Newborn-care training and perinatal mortality in developing countries. *New England Journal of Medicine*. 2010;362:614-623.

318. Carlo WA, McClure EM, Chomba E, Chakraborty H, Hartwell T, Harris H, Lincetto O, Wright LL. Newborn care training of midwives and neonatal and perinatal mortality rates in a developing country. *Pediatrics*. 2010;126:e1064-e1071.

319. Chomba E, McClure EM, Wright LL, Carlo WA, Chakraborty H, Harris H. Effect of
WHO newborn care training on neonatal mortality by education. *Ambulatory Pediatrics*.
2008;8:300-304.

320. Deorari A, Paul V, Singh M, Vidyasagar D, Network MC. Impact of education and training on neonatal resuscitation practices in 14 teaching hospitals in India. *Annals of tropical paediatrics*. 2001;21:29-33.

321. Matendo R, Engmann C, Ditekemena J, Gado J, Tshefu A, Kinoshita R, McClure EM, Moore J, Wallace D, Carlo WA. Reduced perinatal mortality following enhanced training of birth attendants in the Democratic Republic of Congo: a time-dependent effect. *BMC medicine*. 2011;9:1-9.

322. Opiyo N, Were F, Govedi F, Fegan G, Wasunna A, English M. Effect of newborn resuscitation training on health worker practices in Pumwani Hospital, Kenya. *PloS one*. 2008;3:e1599.

323. Pammi M, Dempsey EM, Ryan CA, Barrington KJ. Newborn resuscitation training programmes reduce early neonatal mortality. *Neonatology*. 2016;110:210-224.

324. Trevisanuto D, Bertuola F, Lanzoni P, Cavallin F, Matediana E, Manzungu OW, Gomez E, Da Dalt L, Putoto G. Effect of a neonatal resuscitation course on healthcare providers' performances assessed by video recording in a low-resource setting. *PLoS One*.

2015;10:e0144443.

325. Xu T, Wang H, Gong L, Ye H, Yu R, Wang D, Wang L, Feng Q, Lee HC, McGowan JE. The impact of an intervention package promoting effective neonatal resuscitation training in rural China. *Resuscitation*. 2014;85:253-259.

326. Xu T, Wang H-s, Ye H-m, Yu R-j, Huang X-h, Wang D-h, Wang L-x, Feng Q, Gong Lm, Ma Y. Impact of a nationwide training program for neonatal resuscitation in China. *Chinese medical journal*. 2012;125:1448-1456.

327. Arabi AM, Ibrahim SA, Manar A-R, Abdalla MS, Ahmed SE, Dempsey EP, Ryan CA.
Perinatal outcomes following Helping Babies Breathe training and regular peer–peer skills
practice among village midwives in Sudan. *Archives of disease in childhood*. 2018;103:24-27.
328. Bellad RM, Bang A, Carlo WA, McClure EM, Meleth S, Goco N, Goudar SS, Derman

RJ, Hibberd PL, Patel A. A pre-post study of a multi-country scale up of resuscitation training of

facility birth attendants: does Helping Babies Breathe training save lives? *BMC pregnancy and childbirth*. 2016;16:1-10.

329. Goudar SS, Somannavar MS, Clark R, Lockyer JM, Revankar AP, Fidler HM, Sloan NL, Niermeyer S, Keenan WJ, Singhal N. Stillbirth and newborn mortality in India after helping babies breathe training. *Pediatrics*. 2013;131:e344-e352.

330. Innerdal M, Simaga I, Diall H, Eielsen M, Niermeyer S, Eielsen O, Saugstad O.Reduction in perinatal mortality after implementation of HBB training at a district hospital inMali. *Journal of tropical pediatrics*. 2020;66:315-321.

331. Kc A, Wrammert J, Clark RB, Ewald U, Vitrakoti R, Chaudhary P, Pun A, Raaijmakers
H, Målqvist M. Reducing perinatal mortality in Nepal using helping babies breathe. *Pediatrics*.
2016;137

332. Patel A, Bang A, Kurhe K, Bhargav S, Prakash A, Arramraj S, Hibberd PL. Comparison of perinatal outcomes in facilities before and after Global Network's Helping Babies Breathe Implementation Study in Nagpur, India. *BMC pregnancy and childbirth*. 2019;19:1-7.

333. Patel A, Khatib MN, Kurhe K, Bhargava S, Bang A. Impact of neonatal resuscitation trainings on neonatal and perinatal mortality: a systematic review and meta-analysis. *BMJ Paediatr Open*. 2017;1:e000183. doi: 10.1136/bmjpo-2017-000183

334. Versantvoort JM, Kleinhout MY, Ockhuijsen HD, Bloemenkamp K, de Vries WB, van den Hoogen A. Helping Babies Breathe and its effects on intrapartum-related stillbirths and neonatal mortality in low-resource settings: a systematic review. *Archives of disease in childhood*. 2020;105:127-133.

335. Lockey A, Lin Y, Cheng A. Impact of adult advanced cardiac life support course participation on patient outcomes-A systematic review and meta-analysis. *Resuscitation*.

2018;129:48-54. doi: 10.1016/j.resuscitation.2018.05.034

336. International Liaison Committee on Resuscitation. ILCOR Task Force ADOLOPMENT of existing publication: step by step guide. Published November 2019.

https://www.ilcor.org/data/Task_Force_Adolopment_Instructions_v_2_2Nov2019SACapproved. docx. Accessed March 4, 2022.

337. Boo N. Neonatal resuscitation programme in Malaysia: an eight-year experience. *Singapore medical journal*. 2009;50:152.

338. Jeffery HE, Kocova M, Tozija F, Gjorgiev D, Pop-Lazarova M, Foster K, Polverino J, Hill DA. The impact of evidence-based education on a perinatal capacity-building initiative in Macedonia. *Medical Education*. 2004;38:435-447.

339. OHare B, Nakakeeto M, Southall D. A pilot study to determine if nurses trained in basic neonatal resuscitation would impact the outcome of neonates delivered in Kampala, Uganda. *Journal of Tropical Pediatrics*. 2006;52:376-379.

340. Sorensen BL, Rasch V, Massawe S, Nyakina J, Elsass P, Nielsen BB. Impact of ALSO training on the management of prolonged labor and neonatal care at Kagera Regional Hospital, Tanzania. *International Journal of Gynecology & Obstetrics*. 2010;111:8-12.

341. Zhu X, Fang H, Zeng S, Li Y, Lin H, Shi S. The impact of the neonatal resuscitation program guidelines (NRPG) on the neonatal mortality in a hospital in Zhuhai, China. *Singapore medical journal*. 1997;38:485-487.

342. Vakrilova L, Ch E, Slŭncheva B. French-Bulgarian program" Resuscitation of the newborn in a delivery room"--results and perspectives. *Akusherstvo i ginekologiia*. 2005;44:35-40.

343. Vossius C, Lotto E, Lyanga S, Mduma E, Msemo G, Perlman J, Ersdal HL. Costeffectiveness of the "helping babies breathe" program in a missionary hospital in rural Tanzania. *PloS one*. 2014;9:e102080.

344. Hole MK, Olmsted K, Kiromera A, Chamberlain L. A neonatal resuscitation curriculum in Malawi, Africa: did it change in-hospital mortality? *International Journal of Pediatrics*.
2012;2012

345. Zehry K, Halder N, Theodosiou L. E-Learning in medical education in the United Kingdom. *Procedia-Social and Behavioral Sciences*. 2011;15:3163-3167.

346. Gordon M, Patricio M, Horne L, Muston A, Alston SR, Pammi M, Thammasitboon S, Park S, Pawlikowska T, Rees EL, Doyle AJ, Daniel M. Developments in medical education in response to the COVID-19 pandemic: A rapid BEME systematic review: BEME Guide No. 63. *Medical Teacher*. 2020:1-14. doi: 10.1080/0142159X.2020.1807484

347. Kent F, George J, Lindley J, Brock T. Virtual workshops to preserve interprofessional collaboration when physical distancing. *Medical Education*. 2020;

348. Theoret C, Ming X. Our Education, Our Concerns: Medical Student Education Impact due to COVID-19. *Medical Education*. 2020;

349. Tsang ACO, Lee PPw, Chen JY, Leung GKK. From Bedside to Webside: a neurological clinical teaching experience. *Medical Education*. 2020;

350. Greif R, Bhanji F, Bigham B, Bray J, Breckwoldt J, Cheng A, Duff JP, Gilfoyle E, Hsieh M, Iwami T, Lauridsen K, Lockey A, Ma MH-M, Monsieurs KG, Okamato D, Pelligrino J,

Yeung J, Finn J. 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations: Education, Implementation, and Teams. *Resuscitation*. 2020;156:A188-239. doi:

10.1016/j.resuscitation.2020.09.014

351. Lockey A, Breckwoldt J, Cheng A, Pellogrino J, Schnaubelt S, Elgohary M, Palazzo F, Finn J, Greif T; on behalf of the International Liaison Committee on Resuscitation Education, Implementation, and Teams Task Force. Are participant educational outcomes improved as a result of a blended learning approach for life support education. 2022.

https://costr.ilcor.org/document/blended-learning-approach-for-life-support-education. Updated March 04, 2022. Accessed March 15, 2022.

352. Reder S, Cummings P, Quan L. Comparison of three instructional methods for teaching cardiopulmonary resuscitation and use of an automatic external defibrillator to high school students. *Resuscitation*. 2006;69:443-453.

353. Yeung J, Kovic I, Vidacic M, Skilton E, Higgins D, Melody T, Lockey A. The school Lifesavers study-A randomised controlled trial comparing the impact of Lifesaver only, face-to-face training only, and Lifesaver with face-to-face training on CPR knowledge, skills and attitudes in UK school children. *Resuscitation*. 2017;120:138-145. doi:

10.1016/j.resuscitation.2017.08.010

354. Brannon TS, White LA, Kilcrease JN, Richard LD, Spillers JG, Phelps CL. Use of instructional video to prepare parents for learning infant cardiopulmonary resuscitation. *Baylor University Medical Center Proceedings*. 2009;22:133-137.

355. Nord A, Svensson L, Claesson A, Herlitz J, Hult H, Kreitz-Sandberg S, Nilsson L. The effect of a national web course "Help-Brain-Heart" as a supplemental learning tool before CPR

training: a cluster randomised trial. *Scandinavian journal of trauma, resuscitation and emergency medicine*. 2017;25:1-10.

356. Shavit I, Peled S, Steiner IP, Harley DD, Ross S, Tal-Or E, Lemire A. Comparison of Outcomes of Two Skills-teaching Methods on Lay-rescuers' Acquisition of Infant Basic Life Support Skills. *Academic Emergency Medicine*. 2010;17:979-986.

357. Castillo J, Gallart A, Rodríguez E, Castillo J, Gomar C. Basic life support and external defibrillation competences after instruction and at 6 months comparing face-to-face and blended training. Randomised trial. *Nurse education today*. 2018;65:232-238.

358. Chien C-Y, Fang S-Y, Tsai L-H, Tsai S-L, Chen C-B, Seak C-J, Weng Y-M, Lin C-C, Chien W-C, Huang C-H. Traditional versus blended CPR training program: A randomized controlled non-inferiority study. *Scientific reports*. 2020;10:1-8.

359. de Balanzó Fernández X, Ferrés-Amat E. Standard basic life support training of the European Resuscitation Council versus blended training: a randomized trial of a new teaching method. *Emergencias: revista de la Sociedad Espanola de Medicina de Emergencias*. 2020;32:45-48.

360. Nakanishi T, Goto T, Kobuchi T, Kimura T, Hayashi H, Tokuda Y. The effects of flipped learning for bystander cardiopulmonary resuscitation on undergraduate medical students. *International journal of medical education*. 2017;8:430.

361. Nishiyama C, Iwami T, Kawamura T, Ando M, Yonemoto N, Hiraide A, Nonogi H. Effectiveness of simplified chest compression-only CPR training for the general public: a randomized controlled trial. *Resuscitation*. 2008;79:90-96.

362. Serwetnyk TM, Filmore K, VonBacho S, Cole R, Miterko C, Smith C, Smith CM.

Comparison of online and traditional basic life support renewal training methods for registered professional nurses. *Journal for nurses in professional development*. 2015;31:E1-E10.

363. Sopka S, Biermann H, Rossaint R, Knott S, Skorning M, Brokmann JC, Heussen N, Beckers SK. Evaluation of a newly developed media-supported 4-step approach for basic life support training. *Scandinavian journal of trauma, resuscitation and emergency medicine*. 2012;20:1-9.

364. Perkins GD, Fullerton JN, Davis-Gomez N, Davies RP, Baldock C, Stevens H, Bullock I, Lockey AS. The effect of pre-course e-learning prior to advanced life support training: a randomised controlled trial. *Resuscitation*. 2010;81:877-881. doi:

10.1016/j.resuscitation.2010.03.019

365. Dyer L, Llerena L, Brannick M, Lunde JR, Whitaker F. Advanced Trauma Life Support
Course Delivery: Comparison of Outcomes From Modifications During Covid-19. *Cureus*.
2021;13

366. Castillo J, Gomar C, Rodriguez E, Trapero M, Gallart A. Cost minimization analysis for basic life support. *Resuscitation*. 2019;134:127-132.

367. Szyld EG, Aguilar A, Lloret SP, Pardo A, Fabres J, Castro A, Dannaway D, Desai PV, Capelli C, Song CH. Self-directed video versus instructor-based neonatal resuscitation training: a randomized controlled blinded non-inferiority multicenter international study. *Journal of Perinatology*. 2021:1-7.

368. Arithra Abdullah A, Nor J, Baladas J, Tg Hamzah TMA, Tuan Kamauzaman TH, Md Noh AY, Rahman A. E-learning in advanced cardiac life support: Outcome and attitude among healthcare professionals. *Hong Kong Journal of Emergency Medicine*. 2019:1024907919857666. 369. Chaves J, Lorca-Marín AA, Delgado-Algarra EJ. Methodology of Specialist Physicians Training: From Traditional to e-Learning. *International Journal of Environmental Research and Public Health*. 2020;17:7681.

370. George PP, Ooi CK, Leong E, Jarbrink K, Car J, Lockwood C. Return on investment in blended advanced cardiac life support training compared to face-to-face training in Singapore. *Proceedings of Singapore Healthcare*. 2018;27:234-242.

371. Ko PY, Scott JM, Mihai A, Grant WD. Comparison of a modified longitudinal simulation-based advanced cardiovascular life support to a traditional advanced cardiovascular life support curriculum in third-year medical students. *Teaching and learning in medicine*.
2011;23:324-330.

372. Lockey AS, Dyal L, Kimani PK, Lam J, Bullock I, Buck D, Davies RP, Perkins GD.
Electronic learning in advanced resuscitation training: The perspective of the candidate. *Resuscitation*. 2015;97:48-54. doi: 10.1016/j.resuscitation.2015.09.391

373. Perkins GD, Kimani PK, Bullock I, Clutton-Brock T, Davies RP, Gale M, Lam J, Lockey A, Stallard N; on behalf of the Electronic Advanced Life Support Collaborators. Improving the efficiency of advanced life support training: a randomized, controlled trial. *Annals of internal medicine*. 2012;157:19-28.

374. Thorne C, Lockey A, Bullock I, Hampshire S, Begum-Ali S, Perkins G. E-learning in advanced life support–an evaluation by the Resuscitation Council (UK). *Resuscitation*.
2015;90:79-84.

375. Hsieh MJ, Ko YC, Cheng A, Glerup Lauridsen K, Sawyer TL, Greif R; on behalf of the International Liaison Committee on Resuscitation Education, Implementation, and Teams Task Force. Faculty development approaches for life support courses: a scoping review and task force insights. 2022. <u>https://costr.ilcor.org/document/faculty-development-approaches-for-life-support-</u> courses-a-scoping-review. Updated January 07, 2022. Accessed March 15, 2022.

376. Al-Rasheed RS, Devine J, Dunbar-Viveiros JA, Jones MS, Dannecker M, Machan JT,

Jay GD, Kobayashi L. Simulation intervention with manikin-based objective metrics improves CPR instructor chest compression performance skills without improvement in chest compression assessment skills. *Simulation in healthcare*. 2013;8:242-252. doi:

10.1097/SIH.0b013e31828e716d

377. Amin HJ, Aziz K, Halamek LP, Beran TN. Simulation-based learning combined with debriefing: trainers satisfaction with a new approach to training the trainers to teach neonatal resuscitation. *BMC Res Notes*. 2013;6:251. doi: 10.1186/1756-0500-6-251

378. Baldwin LJL, Jones CM, Hulme J, Owen A. Use of the learning conversation improves instructor confidence in life support training: An open randomised controlled cross-over trial comparing teaching feedback mechanisms. *Resuscitation*. 2015;96:199-207. doi:

10.1016/j.resuscitation.2015.08.010

379. Benthem Y, Van De Pol E, Van Goor H, Tan E. Effects of train the trainer course on the quality and feedback in a basis life support course for first year medical students - A randomized controlled trial. *Resuscitation*. 2012;83:e103-. doi: 10.1016/j.resuscitation.2012.08.266

380. Breckwoldt J, Svensson J, Lingemann C, Gruber H. Does clinical teacher training always improve teaching effectiveness as opposed to no teacher training? A randomized controlled study. *BMC Med Educ*. 2014;14:6. doi: 10.1186/1472-6920-14-6

381. Cheng A, Hunt EA, Donoghue A, Nelson-McMillan K, Nishisaki A, Leflore J, Eppich
W, Moyer M, Brett-Fleegler M, Kleinman M, Anderson J, Adler M, Braga M, Kost S,
Stryjewski G, Min S, Podraza J, Lopreiato J, Hamilton MF, Stone K, Reid J, Hopkins J, Manos J,

Duff J, Richard M, Nadkarni VM. Examining pediatric resuscitation education using simulation and scripted debriefing: a multicenter randomized trial. *JAMA Pediatr*. 2013;167:528-536. doi: 10.1001/jamapediatrics.2013.1389

382. Einspruch EL, Lembach J, Lynch B, Lee W, Harper R, Fleischman RJ. Basic life support instructor training: comparison of instructor-led and self-guided training. *Journal for nurses in staff development*. 2011;27:E4-9. doi: 10.1097/NND.0b013e318217b421

383. Feltes M, Becker J, McCall N, Mbanjumucyo G, Sivasankar S, Wang NE. Teaching How to Teach in a Train-the-Trainer Program. *J Grad Med Educ*. 2019;11:202-204. doi:

10.4300/jgme-d-18-01014

384. Goldman SL, Thompson B, Whitcomb J. A new evaluation method for instructors of advanced cardiac life support. *Resuscitation*. 1986;14:163-169. doi: 10.1016/0300-9572(86)90121-8

385. Herrero P, Baron M, Sojo J, Abad F, Lopez-Messa J. Introducing a new training tool for instructors courses. *Resuscitation*. 2010;81:S106. doi: 10.1016/j.resuscitation.2010.09.433
386. Ismail A, AlRayyes M, Shatat M, Al Hafi R, Heszlein-Lossius H, Veronese G, Gilbert M. Medical Students Can be Trained to be Life-Saving First Aid Instructors for Laypeople: A Feasibility Study from Gaza, Occupied Palestinian Territory. *Prehospital & Disaster Medicine*. 2019;34:604-609. doi: 10.1017/S1049023X19005004

387. Kim EJ, Roh YS. Competence-based training needs assessment for basic life support instructors. *Nurs Health Sci.* 2019;21:198-205. doi: 10.1111/nhs.12581

388. López-Herce J, Carrillo A, Urbano J, Manrique G, Mencía YS. Evaluation of the pediatric life support instructors courses. *BMC Med Educ*. 2021;21:71. doi: 10.1186/s12909-021-02504-2 389. Nallamilli S, Alderman J, Ainsley K, Jones C, Hulme J. Introduction and perceived effectiveness of a novel skillmeter training programme for training in basic life support. *Resuscitation*. 2012;83:e40. doi: 10.1016/j.resuscitation.2012.08.101

390. Pollock L, Jefferis O, Dube Q, Kadewa R. 'I am the nurse who does io!': Impact of a 'training of trainers' paediatric resuscitation training programme in Malawi. *Archives of Disease in Childhood*. 2011;96:A75. doi: 10.1136/adc.2011.212563.175

391. Rajapakse BN, Neeman T, Dawson AH. The effectiveness of a 'train the trainer' model of resuscitation education for rural peripheral hospital doctors in Sri Lanka. *PLoS ONE*. 2013;8 doi: 10.1371/journal.pone.0079491

392. Thorne CJ, Jones CM, Coffin NJ, Hulme J, Owen A. Structured training in assessment increases confidence amongst basic life support instructors. *Resuscitation*. 2015;93:58-62. doi: 10.1016/j.resuscitation.2015.05.028

393. Thorne CJ, Jones CM, Harvey P, Hulme J, Owen A. An analysis of the introduction and efficacy of a novel training programme for ERC basic life support assessors. *Resuscitation*.
2013;84:526-529. doi: 10.1016/j.resuscitation.2012.09.030

394. Wada M, Tamura M. Training of neonatal cardiopulmonary resuscitation instructors. *Pediatrics International*. 2015;57:629-632. doi: 10.1111/ped.12683

395. Yamahata Y, Ohta B, Irie J, Takebe K. Instructors must be trained the ability to evaluate chest compressions. *Resuscitation*. 2014;85:S49. doi: 10.1016/j.resuscitation.2014.03.125

396. Douma MJ, Handley AJ, MacKenzie E, Raitt J, Orkin A, Bendall J, Picard C, Singletary E, Zideman DA, Berry DC, Singletary EM; on behalf of the International Liaison Committee on Resuscitation First Aid Task Force. The recovery position for maintenance of adequate ventilation and the prevention of cardiac arrest: a systematic review. 2022.

https://costr.ilcor.org/document/fa-517-recovery-position. Updated January 24, 2022. Accessed February 14, 2022.

397. Adnet F, Borron SW, Finot MA, Minadeo J, Baud FJ. Relation of body position at the time of discovery with suspected aspiration pneumonia in poisoned comatose patients. *Crit Care Med.* 1999;27:745-748. doi: 10.1097/00003246-199904000-00028

398. Julliand S, Desmarest M, Gonzalez L, Ballestero Y, Martinez A, Moretti R, Rivas A, Lacroix L, Biver A, Lejay E, Kanagarajah L, Portillo N, Crichiutti G, Stefani C, Da Dalt L, Spiri D, Van De Voorde P, Titomanlio L. Recovery position significantly associated with a reduced admission rate of children with loss of consciousness. *Arch Dis Child*. 2016;101:521-526. doi: 10.1136/archdischild-2015-308857

Wagner P, Schloesser S, Braun J, Arntz HR, Breckwoldt J. In out-of-hospital cardiac arrest, is the positioning of victims by bystanders adequate for CPR? A cohort study. *BMJ Open*.
2020;10:e037676. doi: 10.1136/bmjopen-2020-037676

400. Freire-Tellado M, Pavón-Prieto Mdel P, Fernández-López M, Navarro-Patón R. Does the recovery position threaten cardiac arrest victim's safety assessment? *Resuscitation*. 2016;105:e1. doi: 10.1016/j.resuscitation.2016.01.040

401. Kloster R, Engelskjøn T. Sudden unexpected death in epilepsy (SUDEP): a clinical perspective and a search for risk factors. *J Neurol Neurosurg Psychiatry*. 1999;67:439-444. doi: 10.1136/jnnp.67.4.439

402. Ryvlin P, Nashef L, Lhatoo SD, Bateman LM, Bird J, Bleasel A, Boon P, Crespel A, Dworetzky BA, Høgenhaven H, Lerche H, Maillard L, Malter MP, Marchal C, Murthy JM, Nitsche M, Pataraia E, Rabben T, Rheims S, Sadzot B, Schulze-Bonhage A, Seyal M, So EL, Spitz M, Szucs A, Tan M, Tao JX, Tomson T. Incidence and mechanisms of cardiorespiratory arrests in epilepsy monitoring units (MORTEMUS): a retrospective study. *Lancet Neurol*. 2013;12:966-977. doi: 10.1016/s1474-4422(13)70214-x

403. Verducci C, Hussain F, Donner E, Moseley BD, Buchhalter J, Hesdorffer D, Friedman D, Devinsky O. SUDEP in the North American SUDEP Registry: The full spectrum of epilepsies. *Neurology*. 2019;93:e227-e236. doi: 10.1212/wnl.000000000007778

404. Singletary EM, Zideman DA, De Buck ED, Chang WT, Jensen JL, Swain JM, Woodin JA, Blanchard IE, Herrington RA, Pellegrino JL, Hood NA, Lojero-Wheatley LF, Markenson DS, Yang HJ. Part 9: First Aid: 2015 International Consensus on First Aid Science With Treatment Recommendations. *Circulation*. 2015;132:S269-311. doi:

10.1161/cir.000000000000278

405. Zideman DA, Singletary EM, De Buck ED, Chang WT, Jensen JL, Swain JM, Woodin JA, Blanchard IE, Herrington RA, Pellegrino JL, Hood NA, Lojero-Wheatley LF, Markenson DS, Yang HJ. Part 9: First aid: 2015 International Consensus on First Aid Science with Treatment Recommendations. *Resuscitation*. 2015;95:e225-261. doi:

10.1016/j.resuscitation.2015.07.047

406. Freire-Tellado M, Navarro-Patón R, Pavón-Prieto MDP, Fernández-López M, Mateos-Lorenzo J, López-Fórneas I. Does lying in the recovery position increase the likelihood of not delivering cardiopulmonary resuscitation? *Resuscitation*. 2017;115:173-177. doi:

10.1016/j.resuscitation.2017.03.008

407. Navarro-Patón R, Freire-Tellado M, Fernández-González N, Basanta-Camiño S, Mateos-Lorenzo J, Lago-Ballesteros J. What is the best position to place and re-evaluate an unconscious but normally breathing victim? A randomised controlled human simulation trial on children. *Resuscitation*. 2019;134:104-109. doi: 10.1016/j.resuscitation.2018.10.030